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A Crash Course on Static Games

The purpose of this chapter is to offer a crash course on the theory of static games with a fi-
nite number of players, acting simultaneously and competing to achieve individual goals. In
this introductory chapter, players have complete information and no element of the game is
due to chance. Mathematically, this means that no stochastic element is part of the definition
of the game models.

1.1 INTRODUCTION TO STATIC GAMES WITH FINITELY MANY PLAYERS
1.1.1 Notations and Definitions

We study games between N players. We denote by [N] = {1,..., N} the set of the N
different agents/players. Because of the ludic connotation of the word player, like most
economists, we will often prefer the terminology agent. For each agent ¢, the set of actions
that they are allowed to take is denoted by A*. For most of the examples considered in
these lectures, A’ will be a subset of R¥: for some k; > 0. We call A? the set of admissible
actions available to player ¢, or in short, the action space of agent ¢. The choices of elements
of A’ are sometimes called pure strategies to distinguish them from the so-called mixed
strategies which we introduce later on. The elements of the set A = A' x A% x .- x AN of
admissible actions for all of the N agents will be called strategy profiles. For any o € A,
we denote by a = (at,a?,...,a!V) with o’ € A’ such a strategy profile.
We also associate to each agent i € [IN] a cost function:
J:Asa— J(a)=J, a)eR
where we use the notation =% = (a!,...,a’"!,a’*!, ... o) which is commonly used

in game theory to denote the actions of all the agents but agent 7, and single out the role of
the action o' of agent ¢ in their own cost.

)

Definition 1.1 For each i € [N], the best responses of agent i to the actions a~"' =
(ab,...,a'" 1 o'+l . o) of the other agents, is the subset of A%, denoted by br*(a™"),
comprising the minimizers of the cost function A* 3 « — J"(a,, a™"). In other words:

bri(a™") = argmin J*(a, ™). (1.1)

a€eAl

More generally, we define the best response function (for all the agents simultaneously) as
the function:
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br:Asa=(a...;a") = br(a) =brl(a™) xbri(a?) x - xbr¥(a™V) c A

(1.2)
Clearly, this is a set value function (often called correspondence. A strategy profile a* is
said to be a fixed point of the map br if

a™ e br(a®). (1.3)
We can now define the notion of Nash equilibrium as follows:

Definition 1.2 A strategy profile a* € A is said to be a Nash equilibrium if it is a fixed
point of the best response function br. Equivalently, if for each i € [N],

J(a®) < JHod, a”),  foralla'e AW, (1.4)
The collection of all Nash equilibria will be denoted by N :
N ={aecA; acbr(a)}. (1.5)

In plain words a* € N if and only if, for each ¢ € [N], if all the other agents take actions

a*~%, agent i cannot be better off by choosing an action departing from a**.

1.1.2 Social Cost and Price of Anarchy

Definition 1.3 We define the social cost J () of a strategy profile o € A as the sum of the
individual costs J'(av), i.e.

N N
J(a) =Y T () = > T (a' o). (1.6)
i=1 i=1
A strategy profile o that minimizes the social cost among all admissible strategy profiles
a € A of the N players is called a social optimal strategy profile, and it is denote by

*5C ¢ arg min J(c) (1.7)

acA

(a7

We shall often divide the social cost J(«) by N when we vary N and especially when
we try to study the limit N — oo0. Obviously, this does not affect the set of minimizers
of the social cost function. We shall also use the terminology central planner for someone
attempting to search for a social optimal strategy profile. This type of global optimization is
to be compared with the search for Nash equilibria where individual players are optimizing
(selfishly) their own individual costs. To compare quantitatively the effects of these two
forms of optimization, we introduce a couple of measures whose names try to capture their
goals. We first give the commonly accepted definition of the Price of Anarchy as a measure
of the inefficiency of selfish optimization in the above set-up of static strategic game. This
measure tries to quantify the relative effect of individual optimizers trying to minimize
their own individual costs without considering the effect of their choices on the overall
social cost.
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Definition 1.4 The Price of Anarchy (PoA) in a static strategic game is defined as the ratio
between the worst social cost of a Nash equilibrium and the optimal social cost among all
admissible strategy profiles, namely

SWacy J(@) _ sup{J(a*); a* € N}
infaea J(a) J(a*5C) ’

PoA = (1.8)

A similar notion, though less popular, was introduced under the name of Price of Sta-
bility (PoS). It is defined as the ratio between the best social cost of a Nash equilibrium
and the optimal social cost among all admissible strategy profiles:

PoS = infaen J(a)  inf{J(a*):a* e N}
%7 T faca J(@) J(a*5C)

(1.9)

When the aggregate cost function J is non-negative (which is obviously the case when all
the individual cost functions .J¢ are non-negative), the denominator is never greater than
the numerator and as a result PoA is greater than or equal to 1. When it is equal to 1, Nash
equilibria are not any worse than the result of centralized optimization. However, when
PoA > 1, how greater than 1 it is tells us are worse Nash equilibria are when it comes to
the overall social cost.

We shall compute explicitly some of these quantities, for example PoA, in some net-
work games in which agents interact under the restriction of a protocol that leads to collec-
tive solutions producing unexpected (and very unnatural) results. This will shed some light
on the very nature of Nash equilibra. See Subsection[2.3.4]

To close our discussion of optimality, we state the definition of the notion of Pareto
optimality for the sake of completeness.

Definition 1.5 A strategy profile a* € A is said to be Pareto optimal if there exists no
a € A such that

o Vie[N],Jia) < Jia®)
o Jige [N],Jo(a) < JH(ax*)

1.1.3 Search for a Nash Equilibrium

We review quickly the most popular methods used in the search for Nash equilibria.

1. Fixed Point theorem.

The very definition of a Nash equilibrium is based on the notion of a fixed point for a
specific map, the so-called best response function. So it is not surprising that most of
the mathematical proofs of existence are based on the use of fixed point theorems. We
shall give multiple examples in what follows, and in each case, we shall give precise
references to the specific theorems we appeal to. For the time being we list some of
them for the sake of definiteness.

e The Banach fixed point theorem is also known as the contraction mapping theorem.
It can be used when the mapping is a strict contraction and it guarantees not only
existence, but also uniqueness of the fixed point. It is often used to show existence
of ordinary and stochastic differential equations. We shall used it in several cases
in what follows.
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e Brower’s fixed point theorem is one of the earliest ones. It guarantees existence of
a fixed point for continuous maps on a compact set. It was extended by Schauder
to more general settings. We shall use Schauder’s fixed point theorem in several
existence arguments in the sequel. For the sake of later reference, we state the form
of Schauder’s fixed point theorem which we shall use in the sequel.

Theorem 1.6 Let E be a Banach space, and let C' be a non-empty closed convex
setin E. Let F' : C'+— C be a continuous map such that F(C') < K where K is a
compact subset of C. Then I has a fixed point in K.

The proof can be found in [9, Exercise 6.26 p.179].

e Schauder’s fixed point theorem was generalized by Kakutani to set valued func-
tions. The appendix at the end of this chapter states the important facts on set-
valued functions which we will use in these lectures, including Kakutani’s fixed
point theorem [20]. This theorem was used by John Nash in his seminal work [28]].
We give the details in the next section.

e other fixed point theorems have been designed and used to take advantage of the
special structure of some game models.

— for example an order structure amenable to lattice theory is present in the model
as in the case of unimodular games for which Tarski’s fixed point theorem [38]]
is often used;

— or in the case of some potential games for which direct iterative procedures can
converge to equilibria.

For the sake of completeness, we also mention that in the case of differential games, vari-
ational inequality techniques have been used successfully when the cost functions exhibit
strong convexity or monotonicity properties. See for example [36] for an introduction.

1.1.4 Mixed Strategies and Nash Theorem

This subsection is devoted to the statement and the proof of John Nash’s famous existence
theorem for equilibria in mixed strategies. But before we define such equilibria, we prove
a first application of Kakutani’s fixed point theorem to the existence of Nash equilibria in
pure strategies.

Theorem 1.7 Consider G = ([N],A= Al x---x AN J = (Ji)ie[N]) and let us assume
that:

e forallie [N], A®is a non-empty convex compact subset of RF;

e forallie[N], J': A — Ris continuous;

e forallie[N], foralla=t e A™% A" 3 o' — Ji(af, a™?) is quasi-convex, i.e., for all
a€eR, {ae A J(a,a") < a} is convex.

Then G has at least one Nash equilibrium in pure strategies.

Proof:  The proof relies on Kakutani fixed point theorem (see Theorem [T.29). Recall that the best
response br is defined as the set valued functiorﬂ

1 A set value functions is often called a correspondence and it is denoted with a special arrow —».
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br(c) = br'(a™") x - x brN (a™7),
from A into the set 2° of all the subsets of A, where

bri(a™") = arginf J' (o, "),

acA?

and that our goal is to find a fixed point for br, i.e., & € A such that & € br(a). To apply Kakutani
fixed point theorem, we need to check that for all & € A, br () is a non-empty, compact, and convex
set, and that moreover, the graph of br is closed.

e Forany a € A and every i € [N], since A* is compact and the mapping o +— J*(a, &™)
is continuous, the image (range) J*(A’, &™) is compact. So for every i € [N], there exists
a®* e A* such that o™* € br(a™"), which implies that br(cx) is non-empty.

Using the quasi-convexity assumption, for ¢ € [N], if we choose a = J*(a™*, o), the set of
best response to o~ for player i, namely br’ (%) = A" is closed (by continuity of J¢(-, ac™ %))
hence compact, and because of the quasi-convexity assumption, convex as well.

e To prove that the graph of br is closed we start with a sequence {(cn,(3,,)}nen of pairs of
strategy profiles in A x A satisfying 3,, € br(a,,) forevery n € N, we suppose that ¢, > o € A
and 3,, — (3, and we prove that (e, 3) is in the graph of br, namely that 3 € br(c). For every
n € Nand i € [N], we know that for every o’* € A,

T (B o) < J'(0 o)
Taking the limit as n. — 0o and using the continuity of .J¢, we obtain that for every o/ € A?,
J(Ba™) <T@ a).

Thus, 5° € bri(a™*) for every i € [N], or equivalently, 3 € br(c), showing that the graph of
br is closed.

Kakutani’s fixed point theorem (see Theorem [1.29) implies the desired conclusion. ©

Definition 1.8 Given a game G = ([N],A = A x -+ x AN J = (J");e[nq), we define
the extended game G = ([N],A = A' x .- x AN J = (ji)ie[N]) as follows: for all
i€ [N], A* = P(A?) and

Jirt, . al) = J j Jiat, ... aM)rt(dat) .. a7 (da?).
Al AN
The elements 7' of P(A") are called mixed strategies, and the elements © = (w',. .. ,7~rN )
of A are called mixed strategy profiles. A Nash equilibrium for for the game G(N, A, J) is
called a Nash equilibrium in mixed strategies for G.

Nash’s original theorem on the subject [28] was to prove existence of such Nashe equi-
librium in mixed strategies, without any convexity assumptions. We now prove this famous
result in a slightly more general context than the finite action space case.

Theorem 1.9 (Nash Existence Theorem) Let us assume that the game G = ([N], A =
Al x oo x AN J = (Ji)ie[N]) is such that:

e forallie [N], A" is a non-empty, compact subset of a metric space;
e forallie[N], J': A — R continuous.
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Then G has at least one Nash equilibrium in mixed strategies.

Proof: The proof consists in applying Theorem [I.7] above to the extended game. So, at least in an
indirect way, it relies on Kakutani’s fixed point theorem. Since A° is assumed to be a compact metric
space, P(A*) is also a compact metric space when endowed with the topology of weak convergence.
A sequence of probability measures (1 )n>1 is said to converge weakly to the probability measure
w if and only if:

Vf: A" — R continuous, ffdun - ffd,u-

Notice that Al = P(A") is obviously convex and non-empty. The next step is to prove the continuity
of J* : A — R. This is an easy consequence of the continuity of J*. Indeed, if we assume that

7, = (mh,...,mN) converges weakly to w = (7',...,7"), each 7}, converges weakly to 7 and:
ji(ﬁi,...,wf) :f Ji(al,...,aN)ﬂ,lL(dal)...wﬁ(daN)
Al AN
:f W}L(dal)j 7 (da®). .. Jat, ..., a™)xl (da?).
Al A2 AN
Treating o', ..., ™ " as fixed, one sees that the right most integral converges to { , v J*(a', ..., a™) 7" (da™Y),

then, treating o', ..., a2 o as fixed, one sees that the integral with respect to W,ﬁv_l(daN_l)
converges toward the corresponding integral with respect to 7% ~! (da™ =), and repeating the argu-

ment N times we conclude that .J* (7,,) converges toward
f Wl(dal)f 7r2(da2)...J Jiat, .. o™ (da™)
Al A? AN

which is equal to Jt (), proving the continuity of Jt - o '

Flnally, we pick i € [N] and #™* = (m;);2: € A™* where A™* = [[,_, P(A’). and we prove
that the mapping _ _ o _

PAYsr" - J(r, 7 ") eR
is quasi-convex, namely that for each a € R, the set {7 € P(AY) : Ji(m, 7" < a} is convex. But
if,ve{reP(A): J(r,m ") < a}and X € [0, 1], using the definition of J*, we easily check
that
TN+ 0 =N, )= 0,7 )+ 1 -V (v,7 ") <a

which completes the check of the assumptions of Theorem hence, completing the proof of the
present Theorem[[.9] o

Remark 1.10 e The weak convergence in the space of probability P(A") can be metrizised
by the Prokhorov distance or the Wasserstein distance.

o If A'is simply a metric space and A' ¢ P(AY), it is possible to check the compactness
of A using Prokhorov’s theorem. For example, if A® is a separable complete metric
space, Prokhorov’s theorem says that At s tight (namely relatively compact) if and only
if the closure of At in (P(A?)) for the topology of the weak convergence is compact.

1.1.5 Games with Mean Field Interactions

We shall say that a game model has mean field interactions (or in short that it is a mean
field game model) if all the admissible strategy sets A’ are equal to a single set A° and if
the individual cost functions .J* are of the following form:
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Ja) = J (o', a™") = J(« ,ﬁ;iéw) (1.10)

for some function J : A° x P(A%) 5 (o, ) = J(c, ) € R. Here and in the following we
use the notation P(A°) to denote the set of probability measures on A” which is implicitly
assumed to be a subset of a Euclidean space R* and equipped with its Borel o-field. Also,
we used the notation J,, for the point measure with unit mass concentrated at the point .
So the measure appearing as the second argument of the function J in formula (T.10) is the
empirical measure of the actions taken by the players different from player . For the sake
of later reference, we state the following definition of an empirical measure.

Definition 1.11 Ifx = (z',--- ,2%) € E* where (E,&) is a measure space, we denote
by:
|k
o == ) Oy 1.11
A= ; > (L11)

the empirical measure of x. Recall that the point measure 6§, is defined for v € E by
0:(A) = 1ifz € AandO0 otherwise for any A € &.

The following example was proposed by Lasry and Lions as a simple example of mean
field games. It is usually called “where should I put my towel on the beach?”’ and it is
presented in full detail in [[11]. Imagine that A is a compact set representing a beach, and
a® € A is the location of a refreshment stand. Given two positive numbers a and b each
individual beach goer i will choose a location o on the beach to minimize:

Ji(a) _ ad(ai’QO) _ bz d(Oti,Otj)
Jj#i

where d is a distance on A. So each individual wants to minimize the distance to the re-
freshment stand while at the same time avoiding to be too close to the other beach goers.
This is clearly a game with mean field interaction in the sense of the above definition if we
use the function:

J(a, p) = ad(a, ) — bJA d(a, o) p(da).

The standard approach to mean field games is to work in the limit N — oo of large
games for which one expects that the empirical measures 7™ converge toward a measure
1, in which case, the search for Nash equilibria for the [N-player game is replaced by an
approximation obtained by having a generic player respond optimally to the distribution
w of actions of the other players. Mathematically, the search for these approximate Nash
equilibria can be summarized as:

e compute the Best Response Function: p — &" = arginf,c4 J(a, p);
e find a Fixed Point /i satisfying supp i < arginf,c4 J(o, 1),

where supp i denotes the support of the measure p. In words, this second condition means
that the measure [i needs to be concentrated on the best responses. We shall come back to
these types of games later on in the lectures.
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1.2 POTENTIAL GAMES

As before, we denote by A = A! x ... AN the set of strategy profiles, and for any i €
{1,..., N}, the couple (0, ") € Awitha € A’and ™% € Al x ... A1 x AL x
. x AN stands for the strategy profile (al,...,a' ! a,aitt ... o). Also, if ¢ is
any function p : A 3 a — ¢(a) € R, we shall use the same notation ¢ if for a given
player i € [N], we re-order the arguments and evaluate the function at the strategy profile
a = (af, a™"), using the notation ¢(af, ™).
This section is devoted to the presentation of the important class of potential games. It
was introduced by Monderer and Shapley in 1996.

Definition 1.12 A game G = ([N], (A%);—1,... N, (J")i=1..n) is said to be a Potential
Game if there exists amap ¢ : A 3> a — ¢(a) € R, called a potential function, such that
for every player i € [N], and any =% € A~%, we have:

J(B,a™) = J(a,a™) = p(B,a”) —pla,a™),  Va,Be A (1.12)

In words, this definition means that the change in a single player’s cost function due to
a change in their own strategy only, is given by exactly the same change of the potential
function ¢.

Remark 1.13 If the sets of admissible strategies (Ai)i:17.,_,N are intervals in R and each
cost function J* is continuous and differentiable, then the fact that the game is a potential
game means that for every i € [N] we have:

0

(3aiJ (o, ™)

o(a,a™), ae A ate AT

oal

In the set-up of the above remark, standard calculus can be used to prove the following
characterization.

Theorem 1.14 Let G = ([N], (AYiz1.. N (Ji)i=1__,N) be a game in which the strategy
sets A* are intervals of real numbers and let us assume that the cost functions are twice
continuously differentiable. Then G is a potential game if and only if:

2J 02Ji

oatood  datdad

, foreveryi,je{l,... N}. (1.13)

Moreover; if the cost functionals satisfy (IL13) and a° is an arbitrary strategy profile in A,
then a potential for G is given by the function:

N 1 4
ple) = 3 [ (Y0 () (1.14)

where 3 : [0,1] — A is any piecewise continuously differentiable path in A that connects
a’to a(ie 3(0) = a’ and (1) = ).
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The interested reader can find a proof in [26, Theorem 4.5].

Important Consequence of the Definition
If ¢ is a potential function for a game G = ([N, (A");—1,... n, (J%)i=1...n) and if

a* € arg inf p(a),
acA
then for any i € [N] and any ac € A,
T (e, @) = JH (™, @) = pla,a* ) = p(a™, ") 2 0, (1.15)

which shows that a® is a Nash equilibrium for the game. Conversely, if a* is a Nash
equilibrium, it is clear that for each i € [N], ™" is a minimum for the function A* 5 o —
o(a, a®**), which in many cases will be enough to conclude that a* is a minimum of .

Consequences

e If A’ is finite for every i € [IN], so is the number of admissible strategies o« € A and
there is at least one Nash equilibrium when the game is potential.

e If A is compact and the potential function ¢ is continuous, then there exists a Nash
equilibrium.

e Moreover, if A is convex and ¢ is strictly convex, then the Nash equilibrium is unique.

Definition 1.15 A sequence (a,,)n>0 of strategy profiles is called a path if for every n > 0
, Q11 IS obtained from v, by allowing one player, say i, € [N, to change they strategy.

For example, if a’ changes into 8 € A’ then the strategy profile c,, changes to a
new strategy profile o, +1:

1 N

N
ey O "

a, = (« M apgr = (al, ..., a7t Baln L ad).

Definition 1.16 A path is called an improvement path if
Jm (1) < T (o).
The following result is quite useful when the set of feasible strategies are finite.

Proposition 1.17 The end-point of any finite improvement path is a Nash equilibrium.

Proof: Let (o, )o<n<k be a finite improvement path. If oy is not a Nash equilibrium, then there
exists a player ¢(k) who can deviate from a;fk) and lower they cost by using a different strategy, say
iR Consequently, we could add the strategy profile (ﬁ“’“), a,?“”) to the path and extend it while

still improving the cost. This is a contradiction. O

Remark 1.18 Obviously, myopic best response dynamics, or even better response dynam-
ics, whether they are deterministic or random, create improvement paths.So for finite po-
tential games for which the set A of strategy profiles is finite, every improvement path is
finite and every sequence of better or best responses converge to a Nash equilibrium. While
attractive in principle, this result does not always lead to a practical algorithm to compute
Nash equilibria because the cardinality of the set A may be very large and the search for
improvements may be slow.
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Algorithmic Computation of Equilibria

As long as we are concentrating on game models for which the set A of admissible

strategy profiles is finite, it is easy to design an algorithm to compute Nash equilibria in
pure strategies for potential games.

Algorithm 1 Computation of a Pure Nash Equilibrium for a Potential Game

Choose an initial value cg € A (arbitrary)

Set/ =0

while o, is not a Nash Equilibrium do _
Find a player 4, and an admissible action o € A% such that J% (c, a;,") < J(e,)
Set apq1 = (oe,a,-;”)
Set/{ =/¢+1

end while

Return oy

1.2.1 Approximate Nash Equilibria

Prompted by the previous remarks, the following notion of approximate Nash equilibrium
is often used to alleviate the computational difficulties.

Definition 1.19 If ¢ > 0, a strategy profile a* € A is said to be an e-approximate Nash
equilibrium if:

Vie [N], J'(a*)<J(v,a* )4e,  forallae A

Clearly, if € > 0 and if the cost functions J* are bounded (or equivalently if the potential

function is bounded):

every e-improvement path (for which each step reduces the cost by an amount at least
€) is finite;

every better response or best response e-improvement path converges to an e-Nash equi-
librium in a finite number of steps.

The next result shows that a potential function, if it exists, is uniquely determined up to a
constant.

Proposition 1.20 The potential function is determined up to a constant. In other words, if

©1 and sy are potential functions for the same potential game G = ([N, (A%)i=1,.. N, (J%)iz1

then there exists a constant ¢ € R such that

p1 = P2 +cC.

0,1 o,N

Proof: Pick an arbitrary a® = (a®',...,a%") € A, then define a function H : A 3 a =

(a

L...,aY)— H(a)eRby

FRREE
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H(a) =) J' (o) = J'(tit1) (1.16)

i=1

where oy = o, and i1 = (a1, ..., a%%, o

If ¢1 and (2 are potential functions, we can have

o ,aM)fori=1,...N—1,and ays; = a’.

H(er) = p1(@) —g1(a’), and  H(a) = p2(a) — pa2(e).

Let ¢ = ¢1(a®) — p2(a®), the conclusion then follows. ©

1.2.2 Example 1: Cournot Competition

Let us assume that N firms, labelled by the integer numbers in {1,..., N} produce the
same good which they try to sell on the market. The quantity produced by firm ¢ is denoted
by a positive real number ¢* € [0,00). The choice of such a quantity is the control of
a firm on the economy outcome. The production profile of these firms is then denoted
by g = (¢*,...,¢") € [0,00)". The cost for producing ¢ units of good (¢ can be real
numbers) is the same for all the firms. It is given by a function ¢ : [0,0) 3 ¢ — ¢(q) € R.
We denote by @ the total production in the economy, i.e.

N .
Q=>4d"
=1

The price p of the product is determined using a time honored procedure in economics:
satisfying a clearing constraint by matching supply and demand on the market. This is
one by positing an inverse demand function f : [0,00) — R, in which case the clearing
condition reads, p(q) = f(Q). For the sake of simplicity, we choose an affine function:

(@) =a—0Q,

for some constants a, b > 0. Each firm ¢ € [IN] tries to minimize its costs as given by cost
functions J* representing the negative of the net revenues generated from its production
and its sales. More precisely, the cost function J* : [0,00)" — R is given by:

N
T'(q) = —[p(@) - ¢' —c(q")] = c(d') —ag’ +bg" ), ¢

j=1

The Cournot competition game is a potential game. In order to prove this claim, we com-
pute the partial derivative 02.J%/0q'dq’ for every i,j € {1,..., N'}. From the above defini-
tion of the cost functions, it is easy to see that:

*J'a) _ 0 0*J(q)

siow  og %) PYE

) VLjG{l,...N},qu[Qoo)N.

which proves that the Cournot competition game is a potential game. Moreover, we can
also use Rosenthal’s result to construct a potential function:

ola) =3 || 5 0r G, s o
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from a linear path 3 : [0,1] 3¢ — B(t) = tq € [0,0)". A straight computation gives:

TB() _ ocltq)

N
(B)Y = ¢, and L — —a+ 2btq" + bt Z ¢

oq % i
so that
N N N N N
plg) = Y ela)—a Y g +b Y (') 45 Y a D d
=1 =1 =1 i=1 VE)

1.2.3 Example 2: Congestion Games

Here, we list the major components of a static congestion game. We shall revisit this class
of game models in next chapter under the name of network congestion games when a
specific graph structure is underpinning the game model. For the time being, we assume
that a congestion game model comprises:

N players enumerated by {1,..., N}.

A set of resources denoted by E.

For each player i € [N], a set A’ of feasible strategies such that A* < 2¥ the collection
of subsets of E. Namely, for player i, a strategy o’ € A’ is a set of resources o' < FE.
As usual, we denote by A = A x ... AN the collection of feasible strategy profiles for
the N players.

e For each resource e € F, a load function k. : A — {0,..., N} defined as k() =
[{i;e € a'}| giving, for every strategy profile o € A the number of players using the
resource e.

For each resource e € E, a cost function ¢, : {0,..., N} — R.

For each strategy profile o € A, player i experiences a cost .Ji(a) defined as the sum
of the costs associated to the resources they are using, the cost for each such resource
being a function of the number of agents using this particular resource. Mathematically,

this means: 4
T (a) = Y colke(a)). (1.17)

e€Eart

We denote such a congestion game of IV players by the t-uple

(E, (A" iz, Ny (Ce)eer, (ke)eer, (JD)iz1,. N)-

We shall study the important class of network congestion games in the next chapter. They
are also known under the name of undirected Shapley design games. The following exis-
tence result is the most important theoretical result on this class of games. It is due to R.-W.
Rosenthal in 1973 [33]].

Proposition 1.21 Every congestion game with a finite set of resources has a pure Nash
equilibrium.
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Proof: We first prove that the function:

ke (o)
pla) = > >} celk) (1.18)
eeE k=1
is a potential function for the game. For every v € A, i € {1,..., N}, and & € A’,
ke (07 ")
p@a™)y =3 > clk)
eeE k=1
e () ,
= 2 ce(k) + 1iceaiaijce (ke (@, ")) — 1{eeai\ai}ce(ke(a))>
eeE k=1
ke () _
= Z ce(k) + Z ce(ke(a,a™)) — Z ce(ke(av))
eeE k=1 eed\at ecat\@l
ke(at) )
= Z ce(k) + Z ce(ke(@, ")) — Z ce(ke(ar))
eeE k=1 eca ecat
= p(a) + J (@, a™") - J(a) (1.19)

which proves that ¢ is indeed a potential function for the game. To conclude the proof, we construct a
finite improvement path. Recall the result of Proposition and Algorithm[T] Let oo, o1, a2, - - -
of strategy profiles such that for each £ = 0,1, 2, - - - there is a player 7, such that ap+1 = (o, a;”’)
17‘) < J*(a,). Then, the sequence ¢(a;, is strictly de-
creasing, and since the set A is finite, this sequence must terminate after a finite number of steps.

]

for some o € A% such that J%* (o,

1.3 STRATEGIC GAME ZOOLOGY 101

The remaining of this chapter is devoted to a mathematical classification of the various
(finite) strategic games, at least of those models of interest to us in these lectures.

Definition 1.22 An N-player strategic game G = ([N],(A)iz1,... Ny (JY)iz1,...N) is
said to be:
e a coordination game if:

Vi,je{l,...,N},Vaec A, J(a)=J(a): (1.20)
o a dummy game if:
Vie{l,...,N},Yae AVae A, J(a)=J"(&a?). (1.21)

Our first theoretical result identifies potential games as aggregates of games of the
above types.
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Proposition 1.23 An N-player strategic game G = ([N],(AY)i=1... Ny (JD)iz1...N)
is a potential game if and only if there exist N-tuples of functions (©$)i=1,... n and
(gpf)i:17,,_,N such that: for everyie {1,... N}:

T = 9§ + ¢}
and

)i=1,.,,,N) is a coordination game;
)iz1,...N) is a dummy game.

o the game ((A")i=1... N, (¢
o the game ((A")i=1... N, (¢

Proof: (<): Let  be a potential function for the original game, and define for all ¢ € {1,..., N}
and o € A the functions ¢ and ¢ by:

{@f(a) = p(a)
¢ (a) = J' (@) = p(a).

Clearly J ¢ = f + ¢ by definition. Moreover, ¢f(a) = @5 (ax) forall ¢ # j, proving that the game
((A%)i=1,..,~, (¢§)i=1,...,n) is a coordination game. Finally:

pi(a) = pi(a,a™) = pla) + pla,a™) + (@) = J'(@,a”) =0

since ¢ is a potential function for the original game, proving that ((A%)i=1,... 7, (¢)iz1,...v) isa
dummy game.
(=): We define the function ¢ by ¢ = ¢ for any ¢ € [N]. Such a function ¢ is a potential
function for the original game because, if 7 € [IN] and o € A, for any o € A* we have:
I () = J'(a,a™) = o}
=i
=¢(a) —pla,a™)

(@) + ¢f (@) — pf(a,a™) — ¢i(a,a™")
(a) — pi(, o)
which proves the desired result. ©

We now introduce the notion of isomorphism between games which will allow us to
classify game models.

Definition 1.24 Two N-player games, G = ([N], (AYiz1,. Ny (J)iz1, n) and
G = ([N],(A")iz1,... N, (J")iz1,.. n) are said to be isomorphic if there exists N bijec-
tive mappings {¢;}i—1.. N:

b A" 30’ ¢i(a’) e A"
satisfying for everyi € {1,...,N} and every a = (a?,...,a") € A,

Jiat,...a™) = T (¢1(a)),..., on(a™)).
With this definition in hand we can prove the first classification result.

Proposition 1.25 1. Every coordination game is isomorphic to a congestion game.
2. Every dummy game is isomorphic to a congestion game.
3. Every potential game is isomorphic to a congestion game.
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Proof:
I Let G = ([N], (AYiz1,.. N, (J)i=1,...n) be a coordination game and let us denote by
J(a) = J'(cx) the cost function common to all players ¢ € {1,...,N}. We now construct

a congestion game (E, (A"")i—1,... N, (ce)eer, (ke)eer, (J')i=1,...,n) isomorphic to the game

we started from by the following steps:

e ecach strategy profile v € A is associated to a different resource e(cx). The collection of
resources is denoted by F = {e(a); o € A}. In other words, the set F is indexed by the set

of strategy profiles;
e for each resource e = e(a) € E, we define its cost function ¢, : {0,..., N} — R by:

Ce(k) :Ce(a)(k) = 1{k:N}J(a), kE{O,...,N};
e for each player 4, the feasible strategy set A" is defined by:
A" = {¢i(a) : o' e A}
where the mapping ¢; : A* — 2F takes the form:
di(a') = U {e(ofv,ofi)}, o' e Al

a—iteA—i
e for each player 4, the cost function J'* : A’ — R is defined by

Jel) = 3] eelke(@)),

ecalt

where k(') = |{i : e € o’*}| is the load function associated to resource e € F evaluated

at strategy profile o’ € A'. _
By construction, (E, (A")i=1,... n, (ce)eer, (ke)eer, (J')i=1,...,N) is a congestion game. We
already used the notation A’ = A" x ... AN for the collection of strategy profiles for the N
players. To show that it is isomorphic to the game we started from, we notice first that by con-
struction, the mapping {¢; };=1,..., v are bijective from A’ onto A’* for every player i. Moreover,
for a given i € {1,..., N}, for every resource e = e(3) € £ with some 3 € A, and for every
strategy o' = ¢;(a’)) € A" with some o € A, we have

e(B) —eea B =d'

Thus, if aresource e = e(3) € E is fully loaded with a strategy profile o’ = (¢1(a),...,on(a) €

A’ for some v = (a!,...,a") € A, we must have:

ke(a') = N «— e =e(B) € &, i=1,...,N
— ' =a, i=1,...,N
— [B=«
Finally, for every o € A, the cost function for player i evaluated at the strategy profile o’ =
(p1(ad),...,on(aN)) e A satisfies
Ja) = Y] celke(@)) = D celke(@)) = >, Lk, gy (a)=N - J(B)
ccalt e(B)edi(at) {e(B)eB:Bi=at}
so that
T or(e),..on(@) = Y laea J(B) = J(e) = J'(e),
{e(B)eE:Bi=a}

which completes the proof of the desired isomorphism.
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2. LetG = ([N], (AYiz1, Ny (JDiz1,.N) be a dummy game. For each i € [N] and each

a™" e A™" we introduce the resource e(a™ ") and the corresponding cost function ¢, (i)
defined by:
_ JHa,a™) ifj=1
Co(au—i =
(e ) {0 otherwise

for an arbitrary o € A® whose choice does not really matter since we are dealing with a dummy
game. Let E be the set of resources introduced this way and for ¢ € [N] and each o* € A® let us

set:
oia)= |J felaol) U te8)
a—icA—i J#iB—icA—i ai Bl

and as before: _

A" = {pi(a’) s a’ e A"}
We now check that the game (E, (A" )i1... n, (Ce)ecr, (ke)ecm, (J' )iz, n) with A’ =
A x AN and .

Ta) = Y] celke(@)),

eca’?
which is a congestion game by construction, is in fact isomorphic to the game we started from.
Leti e [N],a' € A", o % € A™" and let us consider the strategy profile & = (o, a™") € A.
We claim that for any resource e € E:
a) {j; e€ ¢j(a?)} = {i}if e = e(a™) for some i;

b) [{j; e € ¢;(a’)}| = 2 otherwise. . .
Notice that, by construction of ¢; (a'), we have e(a™") € ¢;(a’). Soif j # i:

ela™) ¢ U  fes™)

B—IeA~J ,at#p%
and hence e(a™%) ¢ ¢;(a’). On the other hand:
ec E\(U{e(aii)} =e=e(B ) forsomeje[N]and 37 € A/
= ee p;(a’).

Now since o™/ # @77, there exists k € [N]\{;} with ¥ # B*, implying that e(377) €

¢ (c®). Consequently, if & = (¢1(a’, -, ¢n(a”)) we must have:
Ja) = > ce(ke(a))
e€p;i(at)
Y ooy (Fepn (@) + ) Y i (keai (@)
pica—i J#iBmic A= FiABI

J(a' a ) = J ()

completing the proof of the desired isomorphism.

. We now start from a potential game. We know from Proposition [T.23] that its cost functions can

be written in the form J° = ¢ + ¢ in such a way that

(INT, (A iz1, N, (95)i=1,.n) ([N, (A=, N, (98)iz1,N)

are a coordination and a dummy game respectively. From the first two steps of the proof, we
know that ([N], (A")i=1,.. ., (¢f)i=1,..v) and ([N], (A)iz1,..v, (¢F)i1.....v) are iso-
morphic to congestion games
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([N]v(A/i)i:1,~-,N7(J/i)z':l ..... ~) and ([N],(A”i)z‘:Lm,N,(J”i)z‘:1 ..... N)

with resource spaces E’ and E”, and isomorphisms ¢} : A® — A" and ¢”; : A* — A"
respectively. Without any loss of generality we can assume that £’ n E” = (J (otherwise, we
can rename some of the resources to get in such a situation). We set £ = E U E” and to each
e € E we associate the cost associate to it as an element of E’ or E”. Next for each i € [N] we
define the function ¢; : A* — 2F by ¢;(a?) = ¢j(a')ud”:i(a’) and A" = {$;(a’); o’ € A%},
andif o’ = (o* ua’t, ... N Ua’) we set:

J(a) =T N+ et oY),

Accordingly:

T (pr(al), - on (@) = T (g1(ah), ... (@) + T (@71 (ad), ..., ¢" N ()
=¢f(a',...,a") + ¢i(a’,....aY)
=Ja!, ..., a™)

which completes the proof of the desired isomorphism and the proposition. ©

1.4 APPENDIX: CORRESPONDENCES AND SELECTION THEOREMS

This appendix collects without proof a couple of abstract mathematical results which are
useful in proving existence and regularity of extrema when dealing with optimization prob-
lems.

Definition 1.26 A correspondence @ between two spaces S and X, denoted by ¢ : S — X,
isamap @ : S — 2%, where 2% is the collection of all the subsets of X.

We said that S is the domain of p, and X is the range space. The image of a set A — S
under @ is the set

seA

The range of a correspondence ¢ is the image of S. We can identify ¢ with its graph gr (),
the subset of S x X given by

gr(p) ={(s,2) e S x X : x € p(s)}.

Definition 1.27 A function 1 is a selection of @ if 1 : S — X is such that for every s € S,
U(s) € @(s).

Remark 1.28 e One of the many differences between functions and correspondences is
the definition of inverse image. For a correspondence p, two generalizations of the
inverse image of a set A — X are the “upper inverse” (also called the strong inverse),
which is defined as p*“(A) = {x : p(x) < A}, and the “lower inverse” (or the weak
inverse) defined by ¢*(A) = {x : p(x) N A # }. These two definitions of inverse
image for a correspondence give raise to two notions of continuity. A correspondence is
said to be “upper hemicontinuous” if the upper inverse image of any open set is open.
Similar definition for it to be “lower hemicoutinuous”.
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e Every correspondence ¢ : S — X has an inverse correspondence o' : X — S
defined by
o l(z)={seS:xzep(s) =" ({r}), Ve e X.

The set o~ (x) is also called the lower section of o at x.

e A correspondence ¢ : S — X between two topological vector spaces S and X is
said to be closed if its graph gr(p) is a closed subset of S x X. A correspondence
¢ : S — X is said to be closed-valued if ©(s) is a closed set for every s € S.

e The notion of “upper hemicontinuous” comes in the Closed Graph theorem which
identifie the property of being closed and being upper hemicontinuous for a closed-
valued correspondence with compact Hausdorff range space. Moreover, the compact-
ness is preserved under upper hemicontinuous property, [I, Lemma 17.8].

Theorem 1.29 (Kakutani-Fan-Glicksberg fixed point theorem) Let K be a non-empty
compact convex subset of a topological Hausdorff vector space. Let ¢ : K — K be a
correspondence such that o(k) is non-empty and convex for all k € K, and ¢ is closed
(gr () is closed in K x K). Then the set of fixed points {k : k € p(k)} is a non-empty
compact set.

We shall use several times a minimization theorem of a topological nature. It is known
under the name of Berge’s maximum theorem [1, Theorem 17.31], stated here for a mini-
mum.

Theorem 1.30 (Berge Minimum Selection Theorem) Let X andY be topological spaces,
let ¢ : X — Y be a correspondence between X and Y with non-empty compact values,
and let f : gr(p) — R be a continuous function. We define

m(z) = inf f(z,y),

yep(z)

and

pla) = argint f(a,) = { =€ pla) s fe.) = inf fo0)

yep(x) yep(w)
Then,

1. m is continuous;
2. W has non-empty compact values.

We conclude this appendix with the statement of a selection theorem which we shall
use in the sequel.

Definition 1.31 A function f : S x X — R is a Carathéodory function if

o forallse S, x— f(s,x) is continuous,
o andforallz e X, s — f(s,x) is measurable.

A correspondence ¢ : S — X is weakly measurable if (s, z) — 0(s,z) = d(z, ¢(s)) is
Carathéodory.



Theorem 1.32 (Minimum Selection Theorem) Ler (S, d) be a measurable space, X a
separable metric space, and ¢ : S — X a weakly measurable correspondence with non-
empty compact values. Let f : S x X — R be a Carathéodory function. We define the
value function m : S — R by

m(s) = inf f(s,z), (1.22)

z€P(s)

and the correspondence 1 : S — X of minimizers by

u(s) = {x € o(s): f(s.x) = in f(s,w}. (1.23)
yep(s)
Then

1. s — m(s) is S-measurable;
2. s+ u(s) has non-empty compact values;
3. s+ u(s) has a measurable selection.

21






Introduction to Graphs & Network Games

2.1 MINIMALIST INTRODUCTION TO FINITE GRAPHS
2.1.1 Basic Notations

An undirected graph G consists of a non-empty finite set V' of elements called vertices
(or nodes), and a finite set &/ of unordered pairs of vertices called edges. To include the
case of directed graphs under the same notation set, we shall often write £ < V' x V even if
technically speaking,V x V' is the set of ordered pairs. An undirected graph with a vertex set
V and an edge set E will be denoted G = (V, E'). We will often use the labels 1,2,..., N
to represent the nodes or vertices so that V' = {1,2, ..., N}, sometimes denoted V' = [N],
and accordingly, an edge will be an unordered pair {i, j} for i, j € V. We say that node 7 is
“connected” to node j if {i, 7} € E. Note that this notation can be a source of confusion as
the edges are unordered. In other words an edge is a “set” with two elements and it should
be denoted {i, j} instead of (4, ) since the order does not matter. Also, notice that we shall
work only with graphs without loops in the sense that (%, ¢) will never be an edge.

We say that two vertices ¢ and j of a graph G are adjacent if there is an edge joining
them, namely {7, j} € E, and the vertices ¢ and j are then incident with such an edge. The
degree of a vertex i of G, denoted d(i), is the number of edges incident with 1.

A useful tool in the analysis of a finite graph G = (V| E) is its adjacency matrix
AG) = [al(-f)]i, jev. If a graph G has N vertices, its adjacency matrix A(G) is defined as
the N x N matrix whose ij — th entry indicates if there is an edge between vertex ¢ and
vertex j. To be specific:

1 if{i,jleFE

Notice that, as long as we are dealing with undirected graphs, the adjacency matrix A(%) is
symmetric.

Remark 2.1 In some models, the entries of the adjacency matrix are real numbers. In
(@)
ij
vertices © and j. Unless specified otherwise, we shall assume that the entries al(»JG) of the
adjacendy matrix are either 0 or 1.

these cases, the entry a;:’ is intended to give the actual strength of the connection between
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As usual in linear algebra, the spectrum of a matrix A, denoted by X'(A), is the col-
lection of the eigenvalues of A. As we already noticed, by definition of an undirected
graph, the adjacency matrix A(%) is symmetric, so its eigenvalues are all real numbers.
Thus, the spectrum of the adjacency matrix A(%) associated to the graph G with N ver-
tices is a subset of R. It has exactly IV elements if we count the eigenvalues repeating
them according to their multiplicity. We denote by A0 (A)) = max{X(A(“))} and
Amin(A@)) = min{ £ (A(%))} the maximum and minimum eigenvalues of A(%).

2.1.2 Measures of Centrality

One fundamental problem in network analysis is to identify important nodes in complex
networks. Different measures of importance or centrality have been proposed to achieve
this objective. We review a few of the centrality measures which we shall use in these
lectures.

Typically, measures of centrality try to quantify the importance of a node based on
the importance of the nodes it is connected to, including the neighbor nodes, the two-hop

(@)

neighbors, the three-hop neighbors, . . .. Notice that, since a, i = 0 or 1, we have:

[ (A©)) ] Za(f)afg)

which is equal to the number of paths from vertex ¢ to vertex ¢ with one hop. Similarly

[(A9)] = % aPuPalf

k=1

which is equal to the number of paths from vertex 7 to vertex ¢ with two hops. More gen-
erally, [(A(G))E]i e 0 if and only if there exists a path joining vertex ¢ to vertex j with
exactly ¢ — 1 hopé. We should keep these simple facts in mind to understand the rationale
behind the definitions of the following measures of centrality.

Katz centrality [22]]:

Definition 2.2 Let G = (V, E) be an undirected graph with N nodes and adjacency matrix
A, and let a be an arbitrary positive parameter strictly smaller than 1/\paz(A)).
Then the Katz centrality of G is defined as:

o N
ka(i) = Z 2 (ak[(A@))’f]_), forallie V. (2.2)
k=1j=1 *

ko can be viewed as a function on the set V' of nodes, or equivalently as an N-vector

ko = [kq(i)]i=1,...,~v. We shall denote by 1, the N-vector with entries all equal to 1.

Since [(A(G) ) k] _is equal to the i-th entry of the vector [(A(G)) k] 1, we can rewrite the
ij

definition of the Katz centrality as:
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[ee]

Z (AN 1y = aA D1y + 0> (AD) 1y +aP(AD) 1y + -

Since 0 < a < 1/Amax (A(G)), the matrix Iy — aA(%) is invertible and its value is given
by the series expansion:

[In — aAD])™ = Iy + aA@ 1 a2[AD]? 4 P[ADP
which proves that the Katz centrality measure can be rewritten as:
ko = (In —aA D™t —IN)1y — 1y
and if we use the fact that
Iy —aA Dk, =1y — [In —aA D)1y = ad D1y

we get:

ka = a[IN — aA(G)]ilA(G)lN

We shall often skip the subscript ; from the notations Iy and 1 when there will be no
ambiguity concerning the dimension.

Bonacich centrality and Degree centrality [0]:

Definition 2.3 Let a, b be arbitrary parameters such that b < 1/\a.(AS)). The Bonacich
centrality measure is defined implicitly as the solution of the equation:

2a+bb 7)) - al. (2.3)

In matrix notation, if we use the notation by ;, for the vector b, p = [bgp(¢)]i=1,... N, the
equation used in the definition states:

b,y = aA D1 +bA@b,, (2.4)

which can be rewritten as:
[I—bA Db, = aA @1 (2.5)

which implies that, since the assumption implies that I — bA(%) is invertible:

1
bay =a (1-549) A@1 26)

The parameter b in the Bonacich centrality measure is a form of radius of influence allowing
us to scale up or down the range of nodes effectually influencing the score. The role of the
parameter a is not much more than a normalization factor. In fact, it is often chosen so that:
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[bab

N
|§ = Z |ba>b|2 =1
i=1

Notice that:

e Ifa = 1,b = 0, we then have by = A(©)1, so that by o(i) = d(i) is the degree
of vertex ¢ (namely the number of nodes immediately connected to ¢). For this reason,
b o is often called the degree centrality;;
if b > 0, b, (i) measures the degree of connection to well connected nodes;
if b < 0, b, (7)) measures the degree of connection to weakly connected (less central)
nodes.

Eigenvector centrality [7] [8] This idea behind the eigenvector centrality is to give a high
score to a node if it is connected to other nodes with high scores.

Definition 2.4 If A > 0 is fixed, we define the eigenvector centrality measure of a node i
as:

1 N
o(i) = 5 3] aff () @7)
j=1

In other words, the importance of node ¢ is proportional to the sum of the importances of
its neighbors. In matrix notation, the vector v of centralities satisfies:

v = AG)y (2.8)

which shows that A is an eigenvalue and v is an associated eigenvector for the adjacency
matrix A(%). A natural requirement we may want to impose on a measure is to be non-
negative. For this reason, we choose A = A4z (A(G)) the maximal eigenvalue of AG),
because in this case, one can find an eigenvector with non-negative entries. This is essen-
tially the statement of the classical Perron-Frobenius theorem in matrix theory.

Other measures of centrality. There are many other measures of centrality, and they
have been put to good use in specific applications. Beyond degree, Katz, Bonacich and
eigenvector measures, betweenness and closedness measures of centrality have also been
used with some success. Moreover, there are also well known extensions to directed graphs
such as the measure of prestige influence and the famous Google page rank measure [29]
that ranks the importance of web pages in online searches.

2.1.3 Density and Sparsity

Roughly speaking, a graph is said to be dense when the number of its edges is of the
same order as the maximal number of edges it could have given the number of vertices. In
contrast, a graph is said to be sparse if it only has a small number of edges. These definitions
are vague and need some work to become rigorous mathematical definitions.

Definition 2.5 The density d(G) of a graph G = (V| E) is defined as the ratio

|E| 2|E|

A=y = v

(2.9)
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If we wanted to define the notions of density and sparsity for a fixed graph, we could say
that a graph G is dense if d(G) > 1/2 and that it is sparse if d(G) < 1/2. However, we
would like to define and use these notions for large graphs as asymptotic properties of the
density. Essentially dense graphs are graphs for which the average degree grows like the
number of vertices. We shall give a more precise definition later on.

Definition 2.6 A sequence (Gy)n>1 of graphs with lim,_,, |V (G,,)| = 0 is said to be
sparse if
|E(Gy)| € O(|V(Gy))) as n — oo.

The sequence is said to be dense if
|E(Gr)| € O(|V(Gn)\2) as n — .

For example, if G, has n nodes and the degree of each node is a fixed constant, say k, then
|E(Gp)| ~ k|V(G,,)| and the sequence is sparse. On the other hand, if the degree of each
node is a fixed fraction v of n, then |E(G,,)| ~ v|V (G, )|? and the sequence is dense.

2.2 RANDOM GRAPHS

We now review simple examples of random graph models which will play an important role
in the sequel, providing examples and counter-examples to some of the abstract limiting
theory touted for the analysis of large networks.

2.2.1 Erdos-Renyi Graphs

At this early stage of our discussion of games over graphs, we only present two types of
simple random graph models which are referred to as Erdos-Rényi because these authors
introduced and studied them in a series of papers in the sixties. See for example [13].

e Given two integers N and M, consider the set {2 of graphs with N vertices and M
edges. The random graph model G(N, M) is obtained by sampling the elements of {2
with the same probability equal to

p- = ()

92| M
e Even though this model of random graphs is usually referred to as the Erdos-Rényi
graph model, it was independently and simultaneously proposed by Gillbert. See [15].
Given a set of IV (fixed, non-random) vertices, assume that edges are present or absent,
independently of each other, with the same probability p € [0, 1]. This kind of random

graph is denoted by G(N, p). Its set of edges is denoted by E(G (N, p)). In the G(N, p)
model, the number of edges is random. Its expectation is:

-1

BlEGM.0 - (7 ).
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Notice also that for a given integer M, the random graph G (N, p) has exactly M edges
with probability:

P[|E(G(N,p)))| = M] = p (1 — p)NN-D/2=M,

2.2.2 Stochastic Block Model

We now described the stochastic block model introduced in 1983 by Holland, Laskey and
Leinhardt in [18]]. The building blocks of the model are:

an integer N representing the number of vertices [N] := {1,--- ,N};
an integer n € {1, -+ , N'} representing the number of communities (of vertices);
p = (p1,...,pn) a probability vector on [n] := {1,...,n} (the prior on the n com-

munities). So the py are non-negative real numbers summing up to one, i.e. Y, pr = 1.
They represent a prior probability on the communities.

e aN-tuple (¢;)i—1,.. v of [n]-valued independent identically distributed (i.i.d. for short)
random variables with values in [n] and common probability distribution p. In particu-
lar fori e {1,--- ,N}, P[¢; = k] = py forall k € {1,--- ,n}. For each sample of the
i.i.d. random variables, ¢y, - - - , ¢y, we define the partition C = {C1, - - - , C,, } of the set
[N]={1,---, N} of vertices into n disjoint subsets given by Cy, = {i € [N]; ¢; = k}.
The elements of this (random) partition are called communities. Notice that N py, is the
expected number of elements in the k-th community, i.e. E[|C|] = Npk.

e asymmetric n X n matrix p = [pg¢]k ¢=1,... » Of real numbers in the interval [0, 1];

With all these elements in hand, the stochastic block model is defined in the following
way.

Definition 2.7 For positive integers N and n < N, a probability vector p of dimension
n, and a symmetric n x n matrix p with entries in [0, 1], samples of the stochastic block
model, SBM (N, n,p, p) in notation, are generated in the following way. After each of the
N vertices is assigned a community label in [n] := {1, ... ,n} independently of each other
and with probability given by the community prior p, conditional on this prior assignment,
all pairs {i, j} of vertices are considered independently of each others, and a vertex i € Cy,
is connected to a vertex j € Cy with probability py, o.

In other words, a random sample G is drawn under SBM (N, n, p, p) if c is a random
variable in [n]? with i.i.d. components (c;);—1,... y With common distribution p, and G =
({1,..., N}, E(GQ)) is an N-vertex simple graph where vertices ¢ and j are connected with
probability P, .;, independently of other pairs of vertices. Even more explicitly:

Ple; = k] = pg, i€ [N]and k € [n],

and
Ple;; € E(G)|c] = Deiess i,j € [N].

As already explained earlier, the (random) partition by community sets C = {C4,...,C,}
can be defined for each k € [n] by Cy, = Ci(c) := {i € [N]; ¢; = k}.

Examples.
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o If pr¢ = p for some fixed number p € [0,1], then the partition in communities is
irrelevant and the stochastic block model gives the Erdés-Rényi model G(N, p).
e Letus assume that p and ¢ are given numbers in [0, 1], let » < N, and let us define the

matrix p by:
- D if k=1
PRU= g if k21

In this case:

— two vertices in the same community share an edge with probability p;

— two vertices in different communities share an edge with probability g;

We recover the so-called planted partition model which is said to be assortative if
p > q, and disassortative if p < q.

The stochastic block model has been the object of very many theoretical and statistical
analyses. In its study, a major challenge is to design algorithms which given a sample
graph, can detect if the sample comes from a Erdés-Rényi model or a generic stochastic
block model. Also, active research is concerned with the determination of the community
structure from graph samples.

For the sake of completeness we give the formulas providing the probabilities of the
sample graphs and their communities. For example, if « € [n]" it is clear that we have:

N n
Ple=a] =] [po. = [ [ *®! (2.10)
i=1 k=1
Moreover, if We define a vector y € {0, 1}(1;) such that y;; = 1., cp(g) for any i,j €
{1,..., N}, then:
PIEWG) =yle=a] = [] %, (01— pew,) (2.11)
1<i<j<N
= ] oy V0 -poVi=v @i
1<k<i<n
where:
Niel@y) = >, ly,- 2.13)
7;<j,:E7j:k,I_7‘:£
Nio(z,y) = > Ly, =0y = [Cr(@)] - |Ce(@)| — Ni(2,y),  k #R.14)
i<j,x,i:k-,w,-:€
. Ck €T
N = B g, = (N - Nt @.15)

i<j,$i:$j:k

2.3 NETWORK GAMES

There are several natural ways to bring together graphs and games into a single model.
A first natural possibility is to identify the N players/agents to the nodes V = [N] =
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{1,---, N} of a graph, the presence of an edge between two nodes signaling a direct inter-
action between the corresponding players. A class of network games of a different nature
occurs when the graph underpinning the game has a physical significance, like for example
in the routing games, the players being independent individuals who cannot be identified
to the nodes of the physical graph, and being in much larger numbers than the vertices in
most applications. We shall study instances of both classes of network games.

2.3.1 Graph Interaction Games

Let us consider a graph G = (V| F) with a vertex set V' = [N] representing N different
agents, and an edge set F — V' x V, the adjacency matrix being denoted by A(%).

Next, we consider here an IV player strategic game and we identify the players with the
nodes of the graph G. For each player ¢, the set of actions that they are allowed to choose
is denoted by A?, assumed to be a subset of RFi for some k; > 0. Next, we introduce the
product A = A! x A% x ... x AN and we call its elements a = (a!,a?,...,a") with
a' € AW strategy profiles.

Looking at the nature of the cost functions J* of the different players i € V, one can
see the first idiosyncrasy of games over a graph. Indeed, while the cost function of player
1 € V is still of the form

J:Asa— J(a)=J a)eR

the dependence on the second argument is usually on a% % = ( namely the

Oéj )j#i’aijc> £0°
actions of the immediate neighbors j of player ¢ in the graph.
As for the notions of best response and Nash equilibrium, they are identical to those

introduced in the previous chapter.

2.3.2 A First Example of Nash Equilibrium

For each player i € [N], let us assume that A’ = R and consider the cost function:

T, a™) = fi(a' = a0+ 8 aliad) + gi(a™) (2.16)
J#

where:

e fi:R—Riseven(e. f(—z) = f(x)),
- f; is decreasing on (—o0, 0],
- fiisincreasing on [0, 00);
e ) gives the strength of the interaction between players (increasing with 4);
o’ is an (autarkic) action preferred by player 7 in the absence of any interaction be-
tween players (i.e. when § = 0).
e g; can be a general function.

By plain differentiation we see that for any i € {1,..., N}, if @~ is given, the best
response of player i is:
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brifa™) =at? —¢- 2 agf) ol (2.17)
J#i
since the minimum of f is attained at 0. In words, player ¢ compares their autarkic action to
the average of the actions of her neighbors, their best response being the difference between
the two. A Nash equilibrium being a fixed point of the best response function, a* € A is a
Nash equilibrium if it satisfies:

a*=a® 5. Y ala®,  i=1,-- N (2.18)
J#i

This is a system of N equations with /N unknowns. We study the case of unconstrained
actions, i.e. when A* = R for all i € [N], later on. However, A® can be smaller. For
example, one has |A!| = 2 in games with binary actions, typically when the action of
a player is to adopt or not to adopt, like in games modeling new technology adoption,
or vaccination, etc. Other types of constraints can be accommodated. For example if the
actions o can only be non-negative, then A® = [0, ) and the fixed point equation for a
Nash equilibrium becomes:

, , o , '
a’“=max(0,oﬂ’0—5-2al(-j)-a*ﬂ), i
J#i

I
—_

or when ¢ is limited to be in a bounded interval, say A; = [0, L], in which case one has
to solve a system of equations:

a*t = min[L,maX(O,of’o -0 Z al(f) . a*j)], t=1,---,N.
Jj#i

Unconstrained Action Games

We close this subsection with the analysis of the unconstrained case for which A° = R for
alli=1,---,N.

Using the fact that az(-iG ) 0 because we do not want our graph to have simple loops, we
see that the system of [NV equations characterizing Nash equilibriums can be rewritten
in matrix form as:

1+ 0AD]a* = a

from which we deduce:
a* = [I+ 64910

provided the matrix T 4+ § A(%) is invertible, which will be the case if |§| is small enough to
guarantee the convergence of the Taylor series expansion:

M+ 064G =164 4 52(AD) 4. 4 (“1)ne™ (A" 4 ...

Remember that the adjacency matrix A(%) captures the geometry of the network structure
of the graph underpinning the interactions, and ¢ captures the cost impact.

Further, we assume that the game is symmetric by assuming that o' = o € R for all
ie{l,...,N}. Since a’ = a1, we have:
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*= ol +6AD] 11
af (1 [T+ A I+ 6A@] + [T+ 6A(G)]‘1) 1

Q
|

af (I — 8[T + 5A<G>]—1A<G>) 1
(1 —bs _s) (2.19)

where b, ;, is the Bonacich centrality measure.

So in the symmetric case, the unique Nash equilibrium is entirely determined by the
graph structure as given by the Bonacich centrality measure since:

OL* = 010(1 — bg,,(s)

and that it is independent of the specific forms of the cost functions f; and g;.

Remark 2.8 In equation (2.17),

o if§ < 0, the best response br' of player i is increasing in the actions of their neighbors.
The game is called a game with strategic complements, as the actions chosen by the
different players mutually reinforce one another.

o ifd > 0, br' is decreasing in the actions of their neighbors. The game is called a
game with strategic substitutes, as the actions chosen by the players mutually offset
one another.

Remark 2.9 The simple relationship which we identified between equilibrium actions and
Bonacich centrality does not hold in general for heterogenous agents when the symmetry
assumption is not satisfied. Still, if all the agents change their autarkic actions o'® by the
same amount, say o — o + a1, then the change in the Nash equilibrium in still given
by the Bonacich centrality since:

a* (@ + al) — a*(a®) = a(1 — bs__s).

2.3.3 Network Congestion Games

We revisit the class of congestion games introduced in Subsection [I.2.3] and add a graph
structure to the model. Recall that congestion games with a finite set of resources are po-
tential games and have pure Nash equilibria, see Proposition and that coordination,
dummy and potential games are isomorphic to congestion games, recall Proposition [I.25]

In this subsection, we consider an N player game, the set of players being {1, ..., N}.
We also assume the presence of a graph G = (V, E), we view each edge ¢ € E as a
resource, and we define a mapping ¢ : E 3 e — ¢(e) € R representing the cost for using
edge e € E. We also assume that to each player i € {1,..., N} is associated an ordered
pair of two vertices (s;,t;) € V' x V and that the set of feasible strategies for player ¢ is the
collection of paths of the graph G from vertex s; to ¢;:

A" = {a c E; ais apath from s, to t;}.
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For each strategy profile a = (al,--- ,a™N)e A= Ay x -+ x Ay welet
N .
e(la) = U o (2.20)
i=1

be the set of all the paths used in « by all the players. For every e € E, we define a load
function k. : A 5 a — k() € {0,..., N} by:

ke(o) =|{ie{l,--- ,N}; eca'}|

It gives the number of players using the edge e in a. To each player i € {1,..., N}, we
associate the cost function J% : A 3 a — J%(ax) € R given by:

s = 3 £y

eca’

The network with these cost functions {.J i}i=1m’ n is called a cost sharing network since
the cost of an edge is divided by the number of players using the edge. For each edge ¢ € F,
we define the cost function ¢, : {0, ..., N} — R defined as
c(e)
ce(k)=T, Vk=1,...,N, and ¢.(0) = 0,

then we can see that the game is indeed a congestion game in the sense introduced in
Subsection[[.2.3] We call it a network congestion game.

In this spirit, we define the social cost for N players employing a strategy profile a € A
as the sum of individual costs of each player incurred by taking collectively the strategy
profile «, namely:

N .
J(a) = Z J' ().

and using the function e : A 3 a — e(a) € 2 defined by [2.20) we see that:

N
J(a) = ZJi(a) = Z Z

i=1eeat

c(e) Z c(e)
= ke(cx) = > e
ke (a) cee(ar) ke (a) ece(a)
and the proof of Proposition shows that this function J is a potential function for the
game (A x ... x AN {J};_1. n) defined above.

2.3.4 The Braess Paradox

This paradox is usually presented with lighter notation. Still, we chose to introduce it as
an instance of the models of the above section, hence the heavier than necessary notation.
We consider the graph G = (V = {s,t,a,b}, E = {€sq, €at, €sp, €pt} ). One should think
of the node s as the start of a trip and ¢ as the terminal location (target) of the trip. To go
from s to ¢, cars have to go through city a or city b. Ignoring the dashed vertical arrow, the
diagram below gives a representation of the possible itineraries.
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The edges of the graph give the individual legs of the
possible trips. We assume that there is an even num-
L ber N (we shall use N = 100 for the purpose of il-
lustration) of car traveling simultaneously from s to
t. Each of them has an identical feasible strategy set
s

Ao = {{esa,€at}, {€sp,ert}}. For edges e € E, we

t
define the cost functions:
\ / Cegq (k) = Ceypy (k) = kv Ceat(k) = Cegp (k) = v

v
b .
for k € {0,...,100}, k being the number of cars trav-
eling through the edge.

In words, the cost incurred for traveling through edges e, and ey, is proportional to the
number of cars on the edge. They are drawn as thick arrows in the above plot. On the other
end, the cost incurred for traveling on edges e, and e, is constant. We should think ot the
cost as the travel time to drive from point s to point ¢. The cost function of traveler i € [ N]
is defined as:

Cery (Ke,o (@) + ce,, (Ke,, (@) if & = {esa;€at}

)= X atiten ={ T @ @) e Tl

eca’
(2.21)
Thus,
Ji(a) = ¢ + the number of cars going through the same route as car i
N
=c+ Z 1)y (2.22)
j=1

Proposition 2.10 o* € A is a Nash equilibrium if and only if 50% of cars go through path
{€sa, €at } and the other 50% on path {ey, eyt }. More precisely

o* € Ais a Nash equilibrium < [{i: o™ = {esq, €at}}| = g

Proof: Let o* € A such that |{i : &' = {€sq, €at} }| = N/2. Then for any rideri € {1,..., N},
assume w.l.o.g. that she goes through path a®t = {esa, eat}. The cost is:

N

P N
J (a*) =c+ Z 1 %.5_q%i =C+ 5

j=1
If she changes to path & = {ss, st }, then her cost becomes:
i~ %,—i N
J(@,a™ ") =c+ Zla*,j:a—&—l =c+ — + 1.
J#i 2

This show that o™ is a Nash equilibrium.
Inversely, for any Nash equilibrium a® € A, we must have for every ¢ € {1,..., N} and every
a e Ao,
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namely

N N
Z 1 xi—a%i < Z 1 x5
j=1 J=1

Since there are only two strategies in Ao, we denote by &_ the alternative strategy in the set Ao

compared to &. We must have for every i € {1,..., N}
N N N
23 Lowgari < O, Loksca + O, Laksca = N. (2.23)
j=1 j=1 j=1
Thus, there must exists another car k € {1,..., N} such that o®* # o*", so that we also have
N N
N
Z 1 s pami = Z 1otk < Eh
Jj=1 Jj=1
On the other hand
N N
Z 1%, gki + 2 Lo#igari =N
i=1 i=1
so that the inequality (2.23) holds for an arbitrary ¢ € {1, ..., N}, namely
. . N
. V] _ *,1 _
H] e o } 5
Again, because there is only two strategy in Ag, we have
; N
Hz st = {esa,eat}}’ =5

which completes the proof. o

Remark 2.11 1. The above Nash equilibrium is unique up to a permutation of the travelers
within each group.

2. Notice that if ky drivers choose the route {es,, €.} and ks drivers choose the route
{esp, €pt}, then the aggregate travel time (the social cost in the terminology of Definition
[I23) is

k)l(lﬁ + C) + kg(k‘g + C) = Qkf — 2Nk + N? +cN
which is minimum for ky = N /2, in which case the social cost is cN + N?/2 and the
average travel time per driver is ¢ + N /2 which is the same cost as the individual cost

in the Nash equilibrium identified above. In other words, according to Definition the
Price of Anarchy is one, i.e. PoA = 1.

Now we get to the actual paradox by adding a new route (edge) between vertices a and
b, denoted by e, and we assign absolutely no cost to the use of this edge, i.e. ¢, (k) =0
for every k € N. In terms of travel time, one could imagine that Elon Musk’s Boring
Company finally delivered by constructing a tunnel from a to b in which cars could instantly
beamed from a to b.

Back from the future, in what follow we assume ¢ > N. For the sake of definiteness we
choose ¢ = N + 1. In any case, the new feasible strategy set, still denoted by Ay, is now:



AO = {{esay eat}a {esb7 ebt}a {esaa €ab, ebt}}~
In this new set up, if we choose a driver ¢ € [ V] and define the integers k1, k2 and k3 by:
k=7 #i o) ={esaseatl}, k2 =1{j #i; o/ = {ew, ene}}

k3 = |{] #* Z7 aj = {esaveabaebt}}
so that k1 + ko + k3 = N — 1, the travel time (cost) of driver 7 is

o 1+ki+kstc=N+c—kyif of sa, at};
e c+1l+kyt+ks=N+c—Fk if o sa,at;
o l+ki+ks+1+ko+ks=N+1+ks if o' = {sa,abd,bt}.

From this, we easily deduce that the unique (uniqueness taken in the same sense as before)
Nash equilibrium a* € A is when all the cars travel on {eg,, €qp, €pt}, in which case the
individual travel time is 2N which is strictly greater than ¢ + N /2 as long as ¢ < 3N /2. A
first facet of the paradox is that even though the addition of an extra leg with no travel time
could be viewed as an improvement, the drivers in a Nash equilibrium experience a signif-
icantly worse outcome: everybody is worse off in the present situation. This example is an
illustration that in some cases, Nash equilibria lead to unnatural and undesirable outcomes.
The social cost is minimized in the same way as before, the drivers splitting themselves
between the two itineraries as if the extra link had not been added, so the minimal per driver
travel time (i.e. social cost) is ¢ + N /2. As a result, the Price of Anarchy is given by:

2N 1 c
—+

PoA= =4 &
AT CYN2 12N

which could be arbitrary close to 4/3 if ¢ € (N,3N/2) is close to N. As argued before,
PoA says how worse Nash equilibria can be when compared to a social optimum.
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Games with Incomplete Information and Auctions

The purpose of this chapter is to discuss games with incomplete information and study the
most frequently used models for auctions. It is important to emphasize that incomplete in-
formation is different from imperfect information. A perfect information game assumes that
each player knows everything perfectly (the spaces of feasible actions, the cost functions,
etc.). This is the situation we considered so far. In an imperfect information setting, the
players still have information about the components of the game, but this information is not
complete. For instance, the information a player receives or acquires about the other play-
ers’ actions or cost functions may be noisy. However, in the incomplete information setting,
a single player does not see what the other players are doing.

In this chapter, we concentrate on problems with incomplete information. In particular, we
study in some detail the standard examples of auctions. We follow the approach initiated
by J. Harsanyi [16|] whose fundamental contribution was rewarded with the Nobel Prize in
Economics which he shared with J. Nash and R. Selten in 1994.

3.1 BAYESIAN GAMES

We shall distinguish between information that is known a priori and information that is
acquired a posteriori. These are two elements of the model which could be stochastic.
There may be more. When compared with the game models considered so-far, Bayesian
games bring to the table a set of important new elements. First, nature can affect the costs
incurred by the players, and consequently their actions. The states of nature (or the world)
will be captured by the elements of a set {2. Players do react to the state of the world
differently according to their types. So each player can be of a certain type in a set of
admissible types. The distribution of the states of the world and the types of the players
are weighted by prior probabilities. At the beginning of the game, a state of the world and
a profile of N types, one for each player, are drawn according to the prior probability.
Before making a decision and taking action, each player is informed of their own type,
but not of the types of the other players and the state of the world. Players choose actions
simultaneously, conditioned on the knowledge of their respective types. Then, they pay
their individual costs.

Definition 3.1 An N - player Bayesian game, denoted by G(£2,0, A, J), consists of the
following elements:

e aset {2 comprising the states of the world;
e foreachplayeri € [N], a set O of types which we shall denote 0°. We use the notation
O = O x --- x OV for the product of the spaces of types of the individual players;
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a prior probability on {2 x O, denoted by p;
for each player i € [N], a set A® of feasible actions. As usual, we denote by A =
Al x .. x AN the set of admissible strategy profiles;

o for each player i € [N], a cost function J* : 2 x © x A — R. The collection of all
cost functions (J%);=1.... N is denoted by J.

.....

We shall denote by P(§2 x ©) the set of probability measures on the product {2 x ©. There
is no ambiguity in this statement as long as both (2 and © are finite. If this is not the case,
we need to specify o-fields of subsets of {2 and © for this set of probability measures to
be well defined. We shall disregard this issue in this chapter to avoid measure theoretic
complications. Even though many if not all the results of this chapter are true in greater
generality, we may want to think of the sets {2 and © as finite.

Definition 3.2 For every player i € [N], a pure strategy &', is a function from ©" into A'.
The set of pure strategy for player i is denoted by A*. A pure strategy profile, say a, is a
collection of N pure strategies, one for each player, namely

a=(al,...,aV)e At x ... x AV,

The set of pure strategy profiles is denote by A = Al x ... x AN. The Bayesian cost
incurred by player i is the real valued function J* : A — R defined by:

Fe) = | | Tw.6.a0)d.d0-0)

where @ = (61,...,0N) and a(0) = (o (0Y),...,aN (ON)).

Remark 3.3 In the above definition of the Bayesian cost incurred by player i, the integra-
tion is with respect to the conditional prior p(dw, dO™"|0%) to emphasize the fact that each
player is informed of their own type 0" before making a decision.

Definition 3.4 A pure strategy profile o® € A is said to be a Bayesian Nash equilibrium
(BNE for short) of the Bayesian game G(2,0, A, J) if for every i € {1,..., N} and every
a; € A;, we have

where (gi,g*fi) — (gl*, . ’gifl*,gi,gz#l*, . ’QN*).
Remark 3.5 1. Notice that the definition of a Bayesian Nash equilibrium uses the Bayesian
costs J* namely the costs integrated with respect to the conditional prior probability. In
other words, this is a Nash equilibrium for the expanded game for which the feasible actions
are pure strategies in A' instead of being mere actions in A’

2. Since a pure strategy is a map o' from ©° into A*, one could define the notion of
Bayesian Nash equilibrium in mixed strategies by considering mixed strategies as maps
from ©% into the space P(A?) of probability measures on A'. We shall use mixed strategies
extensively in Chapterd|and Chapter|6]

3. As defined, Bayesian games are not really games of incomplete information because
the sets A, O, the cost functions J and the prior are common knowledge to all the players.
Only the information about the realizations of the types are not shared. So these games
could be viewed as games of imperfect information.
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3.2 AUCTIONS

Let us now turn to auctions in which IV agents who bid to buy an object. We consider
here a single-stage sealed-bid auctions in which players propose their bids individually and
simultaneously (sealed-bids). Depending on the bids, only one player, called the winner,
will get the object and this winner will have to face a certain cost to purchase the object.
Using the set-up and the definitions introduced above, we model this single-stage
sealed-bid auction as an N - player Bayesian game G(O, A, J, p). More precisely,

there is no component {2 describing the state of the world;
the type of player ¢ is their valuation of the object, denoted by v;. We assume that there
is a maximum value v so that §° € [0, 9] for each 4

e the action of player : is their bid for the object, denoted by «;. The set of feasible actions
for player i is all positive bid, i.e. A* = [0, o0).

e We assume that, under the prior probability distribution on the types, all types (valua-
tions in the present situation) are i.i.d. with distribution po on [0, ).

Remark 3.6 Notice that the prior probability which we denoted by p in the previous
section on our introduction to Bayesian games is here the product probability measure
po X -+ X pg of N copies of the probability measure py mentioned in the last bullet point
above. This common distribution po on [0, ) reflects a form of symmetry among all the ac-
tors involved in the auction. The auction models considered in this chapter can be viewed as
games with incomplete information because individual players do not know the valuations
(types) of the other players.

We now describe the auction mechanism, the choice of the winner, and the cost they
are required to face to acquire the object. While there are many different types of auctions,
those of interest to us in these lectures have the following in common.

e As we already mentioned, nature is not present in auction models and the first step is
the revelation of the types: each player receives the information about their valuation,
and nothing else.

e In the second step, players make their moves by simultaneously placing sealed bids for
the object.

e In the third step, the winner is chosen among the players who placed the highest bid,
and the winner pays for the object.

So we are only considering auctions for which the object goes to the highest bidder. In case
of a tie (several players proposed the same highest bid), the winner is chosen at random
among the highest bidders, with equal probabilities. As for the price the winner has to pay,
we shall consider two specific auction mechanisms which we shall study in detail in this
chapter.

e In a the first price auction the winner pays the highest bid, which is their own bid
since they won the auction.

e In a second price auction also called a Vickrey auction, the winner pays the second
highest bid.
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In any case, the winner needs to compare their payment for the object to their a priori val-
uation to decide whether or not the operation results in a net gain or net loss. We formalize
this point below in the mathematical definitions of these two types of auction.

There are many other types of auction beyond the above sealed-bid auction models.
In contrast, they are open format. Among the most popular, the English auction and the
Dutch auction stand out. The English auction is a multi-stage ascending auction. The
auctioneer starts from a very low price, and at each round, buyers accept the proposed
price and remain in the game, and go into the next round, or exit the game if the price is
regarded as already too high. The auctioneer increases the proposed price progressively at
each stage, and the last player remaining in the game wins. In contrast, the Dutch auction
is a multi-stage descending auction. It starts from a very high price and the proposed price
is lowered progressively until one of the players accepts the price. The first to do that wins
the auction and has to pay this specific price.

We shall not investigate these two types of auctions because in some rigorous sense
(which will not be elaborated in these lectures)

e Descending (Dutch) auctions are equivalent to First Price auctions
e Ascending (English) auctions are equivalent to Second Price auctions

Before we define mathematically the first and second price auctions as Bayesian games,
and proceed to the identification of large classes of equilibria, we introduce a class of
models for which the analysis can be pushed further.

3.2.1 Symmetric Auction Models

Definition 3.7 An N-player sealed-bid auction is said to be symmetric if:

all players share a common type space ©y = [0,7], so that now, © = (0g)N;

all players share a common feasible action space Ay = [0,0), and the set of all
admissible strategy profile is A := (Ag)N;

e all players use the same pure strategy, namely for any o = (a',...,a") € A, there
exists a pure strategy o : Oy — Ag such that o' = a foralli € {1,..., N}. The set of

all admissible common pure strategies is denoted by A.

It is natural to assume that pure strategies in A, are non-decreasing. Indeed, it is reason-
able to expect that the higher the valuation, the higher the bid should be. Also, and mostly
for the sake of convenience, we shall restrict ourselves to continuous and increasing pure
strategies. « € A is continuous if it is continuous on the open interval (0, ), and left and
right continuous at 0 and ¥ repectiveley, i.e.limg~ o a(6) = «(0) and limg~ 5 a(0) = (D).

We denote by F : [0,7] — [0, 1] the cumulative distribution function (c.d.f. for short)
of the individual prior probability po € P([0,7]). Let us assume that player i wins the
auction. There would be no loss of generality assuming that ¢ is a specific player, say 1,
because of the symmetry assumption. If all admissible pure strategies are continuous and
increasing, then for any o € Ay, if we define a by a(0) = (a(0'), - ,a(fy)) € A for
0 € (0p)"N, we have:

a(f;) > maxa(#) < 0; > max 6.
J#i J#i
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Let us denote by Z the highest type of all other players (j # 7)

Z = max 6’ |
J#i
and by G : ©g — [0,1] its c.d.f. which, because of the symmetry assumption does not
depend upon the particular value of ¢. Since the types are i.i.d. for the prior probability, we

have: _
G(2)=P[Z<2]=P[¢ <z j#i]=F(" "

Accordingly, the conditional expectation of Z given the event {Z < 6} for some 6 € [0, 7]
is given by:
1 0
E[Z|Z < 0] = €0 L z G(dz).

When studying auctions, our first concern will be to determine pure strategy profiles
forming a Bayesian Nash equilibrium. In doing so, we shall be concerned with the point of
view of the bidders. But we shall also take the point of view of the auctioneer and compute
the payment he or she can expect by running the auction. To this effect, we introduce the
following definition and notation.

Definition 3.8 Given a type profile @ € O, we denote by p;(0) the payment from player i
to the auctioneer. Accordingly, we denote by E[p;(0)|0;]. the expected payment of player i
conditioned on the knowledge of their valuation 0;.

3.2.2 Equilibrium Analysis of Vickrey Auctions

We first give a precise mathematical definition of this type of auction.

Definition 3.9 An N-player second price auction is a 4-tuple (0, A, J, po) where:

O =0 x .- x ON with ©° = [0,7] for all i € [N];

po € P([0,0]) is the common individual valuation prior probability;

A=Al x ... x AN with A* = [0,0) forall i € [N];

J = (J")iz1,....N where for each i € [N], J' : @' x A3 (0;,a) — J'(6;,x) € Ris
defined by:

’ 0 if o <a
J (eua) = o® g, Zf Oéi _ Oé(l)

K3
[GTad =maxy, aF}]

where V) = maxy, of and o® = max{a? : a; < max; o}

In the above definition of the cost .J%, the first line corresponds to a situation where player
i does not win the auction since thier bid o is smaller than the highest bid, so their cost
is 0. The second line covers two different cases. If the bid ' of player i is strictly greater
than all the other bids, player i wins the auction and pays exactly «(?) to acquire the object.
To obtain their real cost, we subtract their valuation 6; to this payment. The second case
covered by the second line is when player ¢ is not the only one to have the highest bid. For
the sake of definiteness, we chose a specific convention to break the ties. We assume that
the winner is chosen via an independent draw, uniformly at random among the |{j|a; =
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maxy, a* }| players sharing the highest bid, and that the cost faced by player i is the expected
cost over this random draw given that as before, in case of winning, we subtract their
valuation to determine her actual cost.

Since we are in the framework of Bayesian games, a pure strategy for player i € [N]
is a function o from ©% = [0,] intol A® = [0, 00). As before, we denote by A the set
of pure strategies for player i and by A = A! x --- x A" the set of pure strategy profiles.
Accordingly, the Bayesian costs are defined by the expectation (or multiple integral):

J JJH ))po(dB) - po(d67) - - po(dOn) (3.1)

where we used the notation a(8) for the strategy profile (o (6'),--- ,a™ (8V)), and where
the check ~over po(df?) indicates that this term po(df?) is not present, so the multiple
integral is only over the 67 for j # i. So except for 6; which is known to player i, the types
67 for j # i are regarded as independent random variables with common distribution given
by the prior probability py and the Bayesian cost integrate this randomness by including
the above multiple integrals in the cost to player :.

Remember that players try to maximize their individual rewards as quantified by the
difference between their valuation of the object and the actual price they have to pay for it,
or equivalently minimize the corresponding costs.

In a strategic game, an easy way to identify a Nash equilibrium is to find, when they
exist, dominant strategies for all the players. We define these strategies as follows in the
setting of the expanded Bayesian games.

Definition 3.10 For a single player i € [N], a pure strategy o e A is sald to be a
dominant strategy if for every other pure strategy o' € A%, and every a™" € A™%, we have:

Ji(a*, o) < J ot a™h).
In words, no matter what other players are doing, the Bayesian cost incurred by player i

using the pure strategy o' is no worse than the Bayesian cost when they pick another pure
strategy o’.

Clearly, the above definition implies the following simple identification of Bayesian
Nash equilibria.

Proposition 3.11 Ifa* = (a*!, -+, a*N) is a pure strategy profile such that for each i
[N], a*' € A is a dominant strategy for player i, then o* is a Bayesian Nash equilibrium
for the game.

Proof: Indeed, for each i € [N] and o’ € A;, we have:
JH (@™, a* ) < J(a', a*T)
by definition of a dominant strategy for player 7. This proves the desired claim. ©

Theorem 3.12 In a second price auction G(O©, A, J, py), for any player i € [N|, the pure
strategy of € A" defined by:

is a dominant strategy for player i.
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In words, a dominant strategy for player ¢ is to be truthful and bid their own valuation.
Note that according to Proposition the auction is in a Bayesian Nash equilibrium if
all the players use this dominant strategy.

Proof: Let us choose a player i € [N], o' € A’ a pure strategy for this player, o ¢ € A~ pure
strategies for the other players, @ = (6", --- ,0™) a set of types for all the players, and let us define:

. ~di(pd
p = max g’ (6").

We show that it is not profitable for player i to bid 5 < 6. Indeed,

o if6>p>4, player ¢ winns the auction with net cost 3 — 6, the same thing they would get by
bidding 0°.

e if 0" > [ = [3, player i may or may not get the object since k > 2 players have the highest
bid. The expected (over the randomization needed to choose the winner) cost is (B —0")/k, and
player 4 is worse off than by bidding 6%,

e if 8 = 60; > f, neither §° nor § are strong enough bids to win the auction and the net cost to
player 4 is O for both bids;

e if#" > B > f3, bidding 3 is once more worse than bidding #°.
So irrespective of what the other players are doing, bidding 8 < 6" is worse than bidding #°. Simi-
larly, one shows that bids greater than #° are not any better. In conclusion, we showed that player i
bidding their own valuation #° is a dominant strategy. o

The previous result, together with Proposition [3.1T]imply the following result.

*1,...,Q*N)

Corollary 3.13 The pure strategy profile a* = (a satisfying

a*i(0") = 6, Vol e ©°
for every i € [N] is a Bayesian Nash equilibrium for the Vickrey auction.

In other words, being truthful and bidding our own private valuation gives a Bayesian
Nash equilibrium. In the next subsection, we show that it is essentially the only such
Bayesian Nash equilibrium if one restrict ourself to a reasonable class of pure strategies.

Symmetric Equilibria

In this subsection, we restrict ourselves to pure common strategies in Ay which are non-
decreasing and continuous. We shall also assume that the prior of pg € P([0,]) has full
support in the sense that there is no open interval (a,b) < [0, 7] such that p((a, b)) = 0.

Under these condition the truthful equilibrium identified earlier is the only Bayesian
Nash equilibria in this family.

Proposition 3.14 In a symmetric Vickrey auction, if the prior pg is continuous and has full
support, the pure strategy profile o* € A defined by

a* (@) =a*(0) =0, VOe0,:),ie[N],

is the unique symmetric continuous increasing Bayesian Nash equilibrium.
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Proof: Let 3 : [0,4] — [0, 00) be the common pure strategy mapping of a symmetric continuous
increasing Bayesian Nash equilibrium. We show that 3(6) = o* (0) = 6 for all 6 € [0, o0).

While the assumption of continuity of po is not needed for the result to be true, we added it to

make our life easier. Indeed, under this continuity assumption, since the valuations (types) are drawn
independently according to the prior distribution po, no two valuations will be equal and we do not
have to worry about possible ties between the valuations, hence between the bids since we limit
ourselves to symmetric auctions given by increasing pure strategy functions.
o Step 1: we show that for every 6 € [0, 7], 3(0) < 0. Otherwise, there must exist a 6 € [0, 7] such
that (@) > 6, and by continuity of 3, there exists ¢ € (0, 6) such that 3(t) > 6. Choose a player
i € [N]. By symmetry, it does not matter which one.Then the full support assumption for po and the
independence of the individual prior probabilities imply that:

P[Vj # i,67 € (t,0)] > 0

so if the type 6t of player ¢ were to be 0, player i would win the auction with positive probability
because 3(0°) = 4(0) > ﬂ(@J ) for all j +# i since /3 is increasing, and her net cost would be smaller
than if she had bid 0 since 3(f) > 6. This would contradict the fact that we proved earlier that
bidding 0 is a dominant strategy.

o Step 2: we show that for every 0 € [0,7], () > 0. Otherwise, there exists a 6 € (0, 7) such that
B(0) < 6. If that is the case, again by continuity of 3, there exists ¢ € (6, 7) such that 3(t) < 6. As
before, we fix a player ¢ € [N] and the full support assumption on po implies that:

P[Vj +# i,67 € (0,t)] > 0,

so if the type 6 of player i were to be 8, player i would not win the auction with positive probability
because 3(0°) = B(0) < B(67) forall j # i since 3 is increasing. Now if all the other players j # i
keep the same bids 3(67), by bidding 6 instead of 3(0), player i would be better off. Indeed, since
for j # i,67 < t, we have 3(6”) < B(t) < 6 since 3 is increasing, so player i would win the auction
by bidding 6 and have a smaller cost than by bidding B (0) contradicting the fact that the symmetric
pure strategy profile given by the individual strategy function B is a Bayesian Nash equilibrium. ©

We conclude this section with the computation of the expected payment to the auction-
eer.

Proposition 3.15 [n a sealed-bid symmetric second price auction Bayesian Nash equilib-
rium, the expected payment to the auctioneer is given by:

E[p:(0)|6° = 0] = G(O)E[Z|Z < 6] (3.2)
which does not depend upon i because of the symmetry assumption.

Proof: The expected payment to the auctioneer by the winner, say %, equals the probability that ¢ wins
the auction times the conditional expectation of the second highest bid. If the auction is symmetric
and with increasing and continuous admissible pure strategies, then

E[pi(8)[0" = 0] = P[a*(0) > maxa™(¢")|E[maxa™(67)| max o™ (¢”) < a™(0)]

JF
=Pl0 > Z]|E[Z|Z < 0]
= GO)E[Z|Z < 0]

where the second equality is justified by the truthful bidding in second price auction. ©
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3.2.3 Equilibrium Analysis of First Price Auctions

As in the case of Vickrey auctions, we first give a precise mathematical definition of the
model.

Definition 3.16 An N-player first price auction is a 4-tuple (0, A, J, py) where ©, A and
po are as above in the case of second price auctions, namely:

e O=601x---xOywithO; =[0,7]foralli=1,--- ,N;
e o € P([0,7]) is the common individual valuation prlor probablhty
° A=A1><~-~><ANwzthA’—[Ooo)forallz—l ,N;

and the individual costs are given by:

P 0 if o' <o
J’(O,a): { al—0; ZfOéi:Oé(l)
[{jla? =max) aF}|

The sets of pure strategies A’ and the set A of pure strategy profiles are defined in the
same way, and the same goes for the Bayesian costs J*.

In order to simplify the analysis, we shall restrict ourselves from now on to symmetric
auctions with continuous and increasing individual common pure strategy functions. We
shall also assume that the common individual prior probability pg is continuous. This rules
out ties and for that reason, the cost function for player ¢ takes the form:

Jl(e7 a) = (ai _ ei)laiZman¢i ad-
forall 8 € (Op)" and v € A.

Proposition 3.17 In a symmetric sealed-bid first price auction with a continuous common
individual prior probability py, the pure strategy profile o* € A defined by:

a®(0) =E[Z]|Z < 6] (3.3)
is the unique symmetric continuously differentiable increasing Bayesian Nash equilibrium.

Proof: In our search for Bayesian Nash equilibria, we consider only strategy profiles o =
(a*,---,a™) where o' = aforalli = 1,---,N with o : [0,5] — [0,00) increasing and
continuously differentiable. For notational convenience, we restrict ourselves to cases where player 1
wins the auction. As explained earlier, this does not create any loss of generality in the proof because
of the symmetry assumption. Let 8 : [0,7] — [0, o) be such an admissible strategy profile. We
assume that players 2,3, --- , IV use strategy # and we investigate when 3 happens to be the best

response of player 1 to these choices of the other players. If she wins with bid b = 5(8'), then
b> 07) = 0’
max f(0”) = S(max6’)

where the second equality comes from the monotonicity of the pure strategy a*. So she wins if and
only if?

maxj#lﬁj < ,B_I(b)
since being increasing, [ is invertible and its inverse is also monotone increasing and differentiable.
B will be the best response of player 1 if it minimizes her expected costs given her valuation ' and
the fact that the other players use strategy (3. These expected costs are given by:
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JUB) = E['(6,B)]0"]
=E[(B(0") — 91)15(91)>ma’%#1 B(67)
= (b—0")-P[3(6") > max5(6"|0"]
= (b—0"G((B~ ().

B is the best response when this function of b is minimized. The first order condition is obtained by
taking the derivative w.r.t. b, the derivative equals to 0 when #* = ' (FOC), namely

G'(B71(b))
BI(B(b))
and setting § = 0*, 0 = 5~ (b) or equivalently 3(6) = b, the first order condition rewrites:
0= G(6)B'(0) + (B(0) - 0)G'(0)
= G(0)B'(9) + BO)G'(6) — 0G'(6)
= [BG]'(9) — 0G"(0)

and integrating between 0 and § we get: If o™ (0) = 0, then we can have for every € O,

G~ (1) + (b—6") =0,

—G(O)3(60) + f " G2y = 0.

0

and finally: .

8(6) = %L 2G(2)dz = E[Z]Z < 0].
Note that we used 3(0) = 0 which we can assume without any loss of generality because of the
symmetry assumption. In conclusion, we showed that any symmetric Bayesian Nash equilibrium in
continuously differentiable increasing pure strategy was necessarily given by the conditional expec-
tation (3.3). Conversely, one sees by running the argument backward that this conditional expectation
actually gives such an equilibrium. ©

Remark 3.18 In the equilibrium determined above, the expected payment to the auctioneer
becomes

E[p:(8)0" = 0] = a*(0)G(9)

where the first term corresponds to the amount actually paid by the winner to the auctioneer,
and the second term corresponded to the probability that a player wins the auction. This
is exactly the same as the expected payment (3.2) found in the case of the Vickrey auction.
This is a particular case of the revenue equivalence theorem which we state without proof
next.

3.2.4 Revenue Equivalence

We conclude this chapter with an important result in the mathematical theory of auctions.
It is at the origin of many of the developments of the theory of mechanism design. We state
it without proof.

Theorem 3.19 For any sealed-bid auction where the object goes to the highest bidder,
if the types (values) are i.i.d. (in other words if the prior of the Bayesian game model
is a product of copies of the same distribution), and if the players are risk neutral (i.e.
maximize their own cost functions), then any Bayesian Nash equilibrium in pure symmetric
and increasing strategies gives the same expected payment to the auctioneer.



Remark 3.20 Even though we did not say it explicitly in the statement of the Revenue
Equivalence theorem, we need to need to restrict ourselves to strategies satisfying o (0) =
0, namely which bid nothing when the value is 0.
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Static Games with a Continuum of Players

The purpose of this chapter is to present the elements of the mathematical theory of games
with a continuum of players. These games are often called non-atomic games. In a first
section, we review the typical framework used in the existing literature, and we emphasize
the abstract mathematical nature of this framework. Next, we discuss graphon games. In
anticipation of the detailed presentation of the main results, we devote an entire section to
the basic facts from graphon theory. We then generalize the models of Bayesian games to
the continuum of players set-up and we introduce several specific models of games of co-
ordination and information acquisition which rely on the use of noisy signals. The chapter
ends with a discussion of the measure theoretical difficulties created by the manipulations
of a continuum of random variables, especially when we wish them to be statistically inde-
pendent, and we present the theory of Fubini extensions and the so-called exact law of large
numbers.

4.1 NON-ATOMIC GAMES

This section is devoted to the definition of non-atomic games and to the analysis of a spe-
cific subclass of models called anonymous games.

4.1.1 Generalities

The basic components of a non-atomic game comprise the following elements.

e Asetof players: (I,Z, \) is a probability space where I represents the set of players,
is a o-algebra of subsets of I viewed as coalitions, and A is a probability measure that
quantifies the weights attached to the coalitions;

e A real separable Banach space E (for example Co([0, 1]), R¥, etc). It represents the set
of all possible actions / moves of the individual players;

e A function A : I — 2F such that for ) - almost every i € I, A(4) is the set of feasible
actions for player .

e A complete probability space ({2, F,P) where {2 represents the set of possible states of
nature, the o-field 7 comprises the events of interest, and P is a probability distribution.

Here and in the following, we denote by 2F the set of subsets of . We define the set of
admissible strategy profiles by

Ly={aeL'(I,I,\;E); a(i) e A(i) for \—a.c.ie I},
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as the space of (equivalence classes of) A-integrable functions from I into E which for

A-a.e. i € I, take values in A(7). When the Banach space F is infinite dimensional, we
use the notion of Bochner integral when we integrate functions with values in the Banach
space E. In particular, if o € L 4 is an admissible control, the quantity:

Loz(i)d)\(i)

which can be interpreted as an aggregate action, defines an element of E. The reader unwill-
ing to deal with the generality of infinite dimensional Banach spaces can think of £ = R¥
and deal usual integrals only.

Definition 4.1 A preference function is a function Il : I x 2 x Ly 3 (l,w,a) +—
II(i,w, &) € 2F such that:

II(i,w,a) € A(i), forA—a.e.i€landP —a.e.we (2.

For each i € I, the set I1(i,w, ) represents the set of all actions that are feasible for player
i, and preferred to the actions a(i) € A(i), given that the state of the world is w € (2 and
the other players j # 4 play with actions (a(j)) ;-

We assume that players first observe the state of nature w € (2, and then decide to take
actions according to a decision rule:

a:23w— a(w)e Ly.

The introduction of the probability space ({2, F,P) renders the strategy profiles «, and
hence the actions «() of the individual players random as they depend upon the state of
nature w € (2. In part because strategy profiles were only unambiguously defined for A-
almost every player, we omit the effect of zero measure subsets of players in the definition
of equilibria.

Definition 4.2 A decision rule o* is a (random) Cournot-Nash equilibrium (CNE for
short) if for P-a.e. w € 2 and A\—a.e. i € I

II(i,w,a*(w)) = &.
Example 4.3 Like in all the game models considered so far, let us assume that each player
i has a cost function J* : 2 x A(i) x La 3 (w,a’, ) — JH(w,a’, @) € R. If we adapt
the classical definition of a Nash equilibrium to this context, it is natural to say that o* is
a CNE iffor P-a.e. w € 2 and \ - a.e. i € I, we have for all o' € A(i),

JHw, a*(w) (i), a*(w)) < J'(w, o', a*(w)).

This is consistent with above definition if for any decision rule o : {2 — L 4, we define for
A-a.e i€l andP-a.e w e 2,

I(i,w,a) = {a' € A(i); J'(w,a’,a) < J' (w, a(w)(i), a(w))}.
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Remark 4.4 The terminology non-atomic is fully justified when hen the measure X is con-
tinuous, i.e. when A({i}) = 0 for all i € 1. Recall that in measure theory an atom is defined
as a set A € T such that \(A) > 0, and for any B < A and B € T, we have \(B) = 0
or \(B) = A(A). Notice that then, I cannot be countable so we are dealing with a game
model with a continuum of players.

We can try to recast the set-up of games with finitely many players, say N, into the
current framework by setting I = {1,..., N} and defining the probability measure X\ by

MA) = %|A| for any A < I in which case:

1 N
J, o = 5 3o, @

However, such a measure \ is definitely not continuous since it has a discrete finite support
with N atoms.

For more on (static) non-atomic games the reader is referred to [35} 2} 3L [17, 125} 4].

4.1.2 Anonymous Games

We now introduce an important subclass of non-atomic games. It is especially important
because it predates and includes what we came to call Mean Field Games. For each admis-
sible profile o € L 4, we denote by )\ the push-forward of the measure A by c. This is the
measure on E defined by:

Ma(B) = A{i€eI; a(i)e B}), BeB(E)
where B(E) denotes the Borel o-field of F.

Remark 4.5 Technically speaking, the push forward is defined for an everywhere-defined
(Z, B(E))-measurable function o from I into E, the condition «(i) € A(3) for A-almost
every i € I being only relevant to the game definition. However, it is clear that if o and
o' are two such functions which are equal \-almost everywhere in I, then the measures
which are pushed forward by o and o are the same. In other words, the measure )\, only
depends upon the equivalent class of the strategy profile c.

The situation is simple in the case of finite player games. Indeed, in this case, the support
of the measure A is the full set 7 = {1,--- , N} and A is the normalized counting measure,
so that Ao (B) is the proportion of players whose action is in B, that is A\, is the empirical
measure of the action profile c since {.I) implies:

| etanatin) = | el - 5 3 elati)

Definition 4.6 We say that the game is anonymous if for every player i € I, there exists a
function J* : A* x P(E) — R such that for any given strategy profile o the cost to player
iis given by J'(a) = T (a(i), Aa)-
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In the case of a finitely many player anonymous game, the cost to a player is a function of
its own action and the empirical distribution of the actions of all the players. This is what
we called a game with mean field interactions.

In the case of anonymous games, the cost function 7%, when evaluated at (o, i) with
o' € A(i) and pu € P(E), should be interpreted as the cost to player i when their action
is o’ and they face the distribution y of actions chosen by all the players. When X is non-
atomic (continuous), the choice of action by player ¢ does not affect this distribution, so we
can as well say that it is the distribution of the actions chosen by all the other players. The
following comments can be helpful in understanding the notion of anonymous games.

e Even though we did not include it in the above definition, it is possible to include the
state of nature w € (2 in the above definition which accordingly, extends in an obvious
manner to this more general class of game models.

e As stated above, the cost function [J* needs to be defined on the set P(E) of ALL the
probability measures on E. However, for the purpose of the analysis of the game, this
is demanding too much. Indeed, it is enough for the function J i to be defined on the set
of probability measures which happen to be the push-forward of an admissible strategy
profile in L 4. ‘

e While the cost function J* in a general non-atomic game usually depends upon the
state of nature w, the action o’ € A(i) of player i and the entire strategy profile c, in
an anonymous game, the dependence upon the strategy profile comes in through the
pushed forward measure A, only. Since in the case of finite player games the latter
is the empirical measure of the actions, we recover what we called game models with
mean field interactions.

As in the case of the general non-atomic games discussed earlier, we omit the effect of
zero measure subsets of players in the definition of equilibria.

Definition 4.7 An admissible strategy profile a* € L 4 is said to be a Nash equilibrium if
a*(i) e arg inf JU(a', Aox) 4.2)
ateA(7)

for A-almost every i € I. Accordingly, the distribution Ay« is called a Nash (equilibrium)
distribution.

4.1.3 Ecxistence of Nash Equilibria

The proof of general existence results for equilibria is beyond the scope of this first set of
lectures. We shall restrict ourselves to the graphon games discussed next.

Remark on Uniqueness. Inspired by the theory of stochastic differential mean field games
developed by Lasry and Lions, one can introduce a notion of monotonicity for the cost
functions, and under this monotonicity condition, it is possible to prove uniqueness of the
Nash equilibrium.
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4.2 INTRODUCTION TO GRAPHONS

The mathematical theory of graphons is concerned with the study of kernels on general
measure spaces when we view these kernels as limits of random finite graphs [19]. In its
most functional analytic form, it focuses on the spectral theory of the operators associated
to these kernels, especially when the kernels are symmetric (i.e. the graphs in question are
undirected), and the graph limits can be characterized and captured by the results of these
analyses. Here, we restrict ourselves to kernels on the special measure space given by the
unit interval [0, 1], its Borel o-field By ;7 and the Lebesgue measure on [0, 1]. The most
important reference on the subject is still Lovdsz’s book [24]].

First, we recall some standard results from functional analysis which we shall use freely
in our discussion of the abstract theory of graphons.

4.2.1 Functional Analysis Background

A Banach space is a complete normed linear vector space. Here, we shall only consider
separable Banach spaces. For such spaces, the Borel o-field is the smallest o-field con-
taining the balls. A Hilbert space is a Banach space whose norm is derived from an inner
product. We recall some standard properties of operators on Banach spaces, and we refer
to [134]] or [31] for details, proofs and complements.

e A linear operator A : By — B from a Banach space B into a Banach space Bs is
said to be bounded if there exists an M > 0 such that for all f € By,

HAfHBz gJ\4HfHB1’ feBl-

So a linear operator is bounded if the image of the unit ball is bounded, namely, it is
contained in a ball. The smallest of the constants M satisfying the above inequality is
called the norm of the operator. In other words:

|All = sup{|Afl : f e Hy, [ f] <1}

e We denote by L(Bj, Bs) the collection of all bounded linear operators from Bj into
B,. Clearly, it is a vector space. It is in fact a Banach space for the above norm. Notice
that for linear operators, being bounded or being continuous is the same thing.

e If B is a Banach space, a linear operator T' € L(B, B) is said to be invertible if there
exists S € L(B, B) such that ST = I = T'S where I denotes the identity operator of
B, thatis If = f forall f € B. In this case, we write S = T~L. For linear operators,
we use the product notation ST for the composition of mappings, i.e. ST f = S[T'f]
for f € B.

e T is invertible if and only if ker(T) = {f €e B: Tf =0} = {0} and rg(T) = {g €
B:3feB, Tf=g}=B8B.

e If B; and B, are Banach spaces, a linear operator A : By — B is said to be compact
if the closure in Bs of the image by A of the unit ball of B; is compact in Bs.

e The spectrum X (A) of an operator A € L(B, B) is the set of all complex numbers A
such that A — AI is not invertible. Thus, A € X'(A) if and only if at least one of the
following two statements is true:
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1. The range of A — A is not all of B (A is not surjective).

2. A — M\l is not one-to-one (A is not injective).

If T — AI is not one-to-one, then \ is said to be an eigenvalue of A and ker(T — AI)
is called the corresponding eigenspace associated to \.

e If H is a Hilbert space, an operator A € L(H,H) is said to be symmetric if <
Af,g >=< f,Ag > for all f and g in H. This is the natural generalization of the
notion of symmetric matrix. Not surprisingly, the spectrum of a symmetric operator is
a subset of the real line.

e If H is a Hilbert space, an operator A € L(H, H) is said to be a Hilbert-Schmidt op-
erator if there exists an orthonormal basis { f;};>1 of H and a set of square summable
complex numbers {);};>1 such that Af; = \;f; for all ¢ > 1.In other words, there
exists an orthonormal basis of eigenvectors of the operator A, the corresponding eigen-
values being square summable. Hilbert-Schmidt operators are compact.

In what follows, we shall use extensively the Lebesgue spaces on the unit interval, namely
the Banach spaces L ([0, 1]) and LP([0, 1]; R¥) for 1 < p < oo. Except for p = o0, these
Banach spaces are separable. For p < oo, LP([0, 1]; R¥) is the space of (equivalence classes
of) measurable functions f on [0, 1] with values in R¥ satisfying:

j @) de < o,
[0,1]

the norm || f|| .» of such a function f being defined as the power 1/p of the above integral.
LP([0,1]) is a short notation for the case k = 1. L ([0, 1]; R¥) is the space of (equivalence
classes of) essentially bounded measurable functions f on [0, 1] with values in R¥ the norm
being the essential supremum of | f(x)| over = € [0, 1]. We shall use the same symbol | - |
to denote the modulus of a complex number, the absolute value of a real number or the
Euclidean norm in R¥,

The case p = 2 is very special because H = L?([0,1]; R¥) is a Hilbert space for the
inner product {(f, g) = §, ;| f(z) " g(z)dz.

4.2.2 Graphon Theory

Recall that L?([0,1]) is the Hilbert space of square integrable real-valued functions de-
fined on [0,1], and L?([0, 1]; R¥) is the space of square integrable R” - valued functions
defined on [0, 1]. We shall denote them both by L? when no confusion is possible. Square
integrability is understood with respect to the Lebesgue measure on [0, 1] and as usual, we
use the term function instead of equivalence class of almost everywhere equal functions for
the elements of these Hilbert spaces. The norms | - |2 of these Hilbert spaces were defined
earlier.

Recall that for any bounded linear operator A, we use the symbol X(A) to denote its
spectrum. As in previous chapters, the symbol 15 € RY denotes the vector of all ones,
and 1o 11(-) the constant function equal to one on [0, 1]. Here, I will denote the identify
operator, most often of L2,

Part of the theory reviewed below applies to a general probability space (I,Z, Ar), but
for the sake of definiteness, we shall use I = [0, 1], Z = B(I) its Borel o-field, and A; the
Lebesgue measure.
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Definition 4.8 A kernel is an integrable measurable function k : [0,1] x [0,1] — R. We
shall say that k is a graphon if it is symmetric (i.e. k(x,y) = k(y,z) for all x and y in I)

and with values in [0, 1]. The collection of graphons is denoted by W.

In the context of graphon games which we shall study in the next section, the variable z € 1
generalizes the notion of player, and k(x,y) will quantify the strength of the interaction
between player x and player y.

Definition 4.9 7o each graphon w € W, we associate the graphon operator A" : L? —
L? defined by:

[Awf]m:f wlz, ) fwdy,  fel? zelo1] 43

[0,1]
Notice that [A" f](x) is defined for every x € [0, 1] if w is defined everywhere, and that its
value does not change if f is replaced by a function which is equal to f almost everywhere.
A" is a bounded operator on L? and by definition, A* is what is called a kernel operator.
In fact, sine w takes values in [0, 1], A" as defined by (4.3 can be viewed as a bounded

operator from LP to L? of norm at most 1 for every p,q € [0,1]. Since the kernel w is
square integrable in the sense that:

f J lw(z, y)|* dedy < oo,
[0,1] J[0O,1]

A% is a Hilbert-Schmidt operator on the Hilbert space L2. As such, its spectrum X(A™)
is a countable set of square summable eigenvalues )\; , the sum of their squares giving the
square of the Hilbert-Schmidt norm of the operator A":

|4 s = D) Nl < 0.

i=1

The function w being symmetric and real valued, the operator A" is symmetric and as
a result, all of its eigenvalues are real. We shall use all these properties of the graphon
operator, and in particular, the fact that it is a compact operator.

Centrality Measure

We already hinted at an analogy between graphs and graphons. In this spirit one can define
the Bonacich centrality of a graphon as:

by = [1 — AAY] 1o g (4.4)

in other words, the resolvent operator evaluated at the constant function equal to 1. This
definition makes sense for A € [0,1/p(A™)) where p(A™) denotes the spectral radius of
the graphon operator A™.
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4.2.3 Finite Graphs Naturally Associated to Graphons

Graphons should be thought of as finite graph limits. Incidentally, graphons can provide
natural procedures to generate sequences of deterministic finite graphs and samples from
random graph models as we are about to demonstrate. Also, we shall emphasize the fact
that finite graphs should be viewed as step function graphons.

Definition 4.10 We say that a graphon w : [0,1]> — R is a step function if there is a
partition D = {Dy,..., Dy} of [0,1] into measurable sets such that w is constant on
every product set Dy, x Dy. In other words, if there exists a symmetric real matrix A =
(akg)lgk/g]\/ such that:

w(r,y) = ar, V(z,y) € Dy x Dy. 4.5)
The sets Dy, x D, are called the steps of w.

Example 4.11 For each integer N we denote by DV = {Dy, ..., Dx} the regular parti-

tion of [0, 1] with D; = [52, &) fori=1,...,N — 1, Dy = [22,1].

Now if G = (V,E) is a graph with V- = [N] and A¢) = (al(-jG))Ki,KN is its ad-
(@)

jacency matrix, we use the regular partition DV of [0,1] and define the graphon w
by w& (z,y) = al(»f) if (x,y) € D; x Dj. Note that if all the entries of the matrix

[ang)]q;j:L... _N are non-negative and not greater than 1, then w(@) WO. Also, note that
these entries do not need to be 0 or 1.

We now explain how to construct random graph models from a graphon.

Definition 4.12 (Sampling procedure) Given a graphon w € W and an integer N, for each
realization {u;}i=1,... N of i.i.d. random variables uniformly distributed on [0, 1], we define
the weight matrix A, as follows:

[Auwlij = Lizjw(u;, ug). (4.6)

Then, starting from A, we construct the random graph with set of vertices [N] =
{1,---, N} by connecting different vertices i and j with probability [A]i; = w(us, u;).
In other words, given the realizations {u;};=1,... N, we have:

.....

P[Q(G) = 1] = [Aw]ij = w(ui7uj)'

ij
Notice that [A,,];; € [0, 1] while anG) € {0,1}.

e By definition of the above sampling procedure, for any p € [0, 1], the constant graphon
w(x,y) = p corresponds to the Erdos-Renyi random graph model G (N, p) with edge
probability p.

e If we consider a prior probability vector p € [0, 1]™ with } , p, = 1, any step function
graphon w!™ gives raise to a stochastic block model SBM (N, p, W™). A sample
(X,G) with z; € [0,1] and G = ([N], E(G)) can be characterized by the weight
adjacency matrix A,, computed from wl™.
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We now go back to the part where we explained how to see a graphon as a random
graph model. Given [N] = {1, ..., N}, generate x1, ..., zy i.i.d. U(0,1) and let

a

w) _ Jw(zizj), ifi#j,
& 0, ifi=j.

We then define the random variables a?7 € {0, 1} such that P[a® = 1] = a{*.

iJ
Let us now examine the sampling procedure if the graphon is a step graphon. So let
us assume that there exists a partition D = {Ds,...,D,} of [0,1], and a symmet-

ric matrix p = [pk.¢|x,e=1,.. » Of non-negative numbers such that w(z,y) = pg ¢ if
(z,y) € Dy, xDy. Set oy, = |Dy| for the Lebesgue measue of the st Dy. This is the
probability that a random variable Uy, uniforrnly distributed over [0, 1] belongs Dy.
Then the above sampling proceddure for the step graphon w gives rise to the stochastic
block model. Indeed, the probability that there is an edge between the vertices ¢ and j
is

P[a™ = 1] = probability there is an edge between i and j
= w(u;, uj)
= pre if up € Cyand £ € Oy,
= pre with probability ayay

apay being the probability that {U € Dy and U, € D;} if the uniform random
variables (U )1<k<n are independent.

4.2.4 Cut Norms

For each measurable function w on I x I, we denote its LP(I x I) - norm by |jw,| for
pe[l,0),ie.

» 1/p
oty = [| el dea] "
X

Obviously, this norm is of interest when it is finite. The co-norm | - |4 is defined as the
essential supremum as usual. We shall use these norms to manipulate the functional analytic
properties of a graphon kernel and its associated operator. However, for their role as limits
of finite graphs, graphons are better studied using the so-called cut norm.

Definition 4.13 The cut norm of a graphon w € W is denoted by |wl|lg and is defined as
follows:

Jwo = sup
D1,Ds

J w(z, y)dxdy’ 4.7)
D1 X D2

where the supremum is taken over the measurable subsets Dy and Dy of I = [0, 1].

Remark 4.14 By a standard monotone class argument it is easy to show thatL

[wlo = sup j J F(@)g()w(a, y)dady.

0<f<1,0<g<1
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Despite its name, the cut-norm is not a norm in the usual sense. It is used to define the
notion of cut-distance between graphons.

Definition 4.15 The cut metric between two graphons v and w in W is defined as:

dg(w,v) = inf |w™ —v|g,
WEH[OJ]
where w™ (x,y) = w(r(z),7(y)) and I 1) is the class of bi-measurable, measure pre-
serving bijections of [0, 1] onto itself.

Again, dg, is not a real distance on W. Indeed di(w, v) = 0if v = w™ for some 7 € o 13-
So we define the equivalence relation ~ on the space W of graphons by

w ~ w if there exists 7 € Il[g 1) such thatv = w™,

and on the quotient space, W = W/ ~, once appropriately defined, dy becomes a real
distance. This quotient space is in fact complete and compact for the distance d. For the
sake of completeness we state such a result even though its proof is beyond the scope of
these lectures. We refer to [[19] and [[12] for details.

Theorem 4.16 The graphon (quotient) space YV is a compact metric space (hence com-
plete) for the metric d.

Properties such as approximation, convergence, etc of graphons are naturally stated
and interpreted in terms of the cut norm distance. On the other hand the classical theory
of operators offers numerous tools to control the properties of the graphon operators. The
following estimate will allow us to use the best of both worlds.

Proposition 4.17 A graphon w € W and its associated graphon operator A" satisfy, for
any p,q€ [1,0]andq = (1 —1/q)71,

|wla < A% ||zr,ra < V2(4]w]g) ) e

Recall that the above operator norms are defined as:

HA“}“L?%L‘J = sup HAwaL’I = sup sup waf(x) g(m)dl‘
Iflle <1 I£lze <t llgll, o <1

4.8)
— sw s [ [wle)f gy

1£l2r<1 gl o <1

The special case is when p = ¢ = 2 is particularly simple. It reads:

|wla < [A%]z2.22 < V8[wlo-

This proposition helps shifting the burden of proof of smoothness or convergence, from
properties of functions to properties of operators. It syas that if one needs to prove conver-
gence of a sequence (w,),>1 toward a graphon w, it can be approached by proving that
dn(w, wy,) tends to 0, or equivalently that |AY — A" |1p pa = [|A*~""| L L4 tends to 0.
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Proof: Step 1. We first prove the result in the particular case p = o0, ¢ = 1, namely that:
[wle < |AY Lo 21 < 2|w]o.

Notice that:

[A“[go g1 = sup  sup j A f(2)g(w)dax

[fllpeo<1 llgllLoo<1

= sup  sup wa(ay)f(y)g(w)dwd%

-1<f<1 —1<g<1
so if we take f = 1p, and g = 1p, for Dy and D5 Borel subsets of [0, 1], then we have:
1A Lo, z2 = [wlo-

Next, decompose the functions in the unit balls into the difference of two non-negative functions. We
introduce functions f1 and f> valued in [0, 1] such that f = fi1 — f2, as well as g1 and g2 such that
g = g1 — g2. We get:

|A%| g2 = sup  sup j jwm,y)[fl(y)—fz(y)y[m(w)—gz(x)]dwdy. 49)

0<f1,f2<1 0<g1,92<1

Since

j fw(w,w[ﬁ W) — L) [91(x) — ga(a)]dedy

=AY (f1 = f2), (g1 — g2))
= (A f1,g1) + (AY f2, g2) — (AY f2, 91) — (AY f1, g2y
< (A" fi,g1) + (AY fa, ga),

we must have:

[A* |z 2 < sup sup (A" f1,91) + (A" fa,92) = 2|w]o.

0<f1,f2<1 0<g1,92<1
which concludes the proof of the first step.

Step 2. We prove that:
A Lo, 1 <A™ Lr, L.

To prove this, we notice that:

[A¥|Lr,La = sup [A™ fllLa

[fllLp <t

> sup [A"f|La

Ifll oo <1

> sup A" S =AY Lo 11
£l oo <1

Step 3. To conclude the proof of the lemma, we use the Riesz-Thorin interpolation theorem. See
for example Theorem 4.32 in [9] Now, we use this theorem in the following way. Let p1 = o0 and
g1 =1.Setr = (1— %) A %,sothatl—r = % v(l-— %).Deﬁneﬁzp(l—r) and § such that
1— 2= (1=r)(1—32). Then p,qgarein [1, 0],
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11 1 1
— =) =T )
P q P Q1

(

Riesz-Thorin’s theorem tells us that

|A% | p, 0 < [A”|Tor an A"

and the right hand side is bounded by 2||w||5. Indeed
IA | Lp,pa < A% |1 poo = [wleo < 1.

This concludes the proof of =
Finally, we give a convergence result of importance in practical applications.

Proposition 4.18 Ler {w™},>1 be a sequence of graphons such that

lim ds(w",w) =0
n—o0
for some graphon w. Then there exists a sequence {7, }n>1 in the space IIjg 1 of permu-
tations of [0, 1] such that:
lim [A®™ — A¥| = 0.
n—0o0

Proof: For each € > 0 there exists an integer N. such that if n > N, the ds(w™,w) < e. So
for each n > N, there exists m,, € IIjg 1} such that [[(w™)™ — w| < e. We conclude with the
equivalence of the cut norm and the cut distance proven in the above proposition. ©

4.3 GRAPHON GAMES

In this section, we study the class of non-atomic games associated to graphons as defined
in the previous section. We present the main results of [30]], though with different proofs.

In the chapters devoted to finite games, a player was represented by an index in
{1,..., N}. In the beginning of this chapter, we discussed non-atomic games for which
players were indexed by the elements of a measured space (I,Z, A). Graphon games use
the same general set-up as non-atomic games for the particular case where I = [0, 1],
T = Bj the Borel o-field of I, A\ = A being the Lebesgue measure dz. Consistent with
our discussion of non-atomic games, strategy profiles are now functions « : I — R* with
a(r) € A(r) < R¥= for all x € I, and we assume that k, < k, in other words that
all the A® are contained in the same Euclidean space R*. Remember that in the case of
games with finitely many players, a strategy profile was a vector & = (o, ..., a!V), where
o’ € A(i) = R¥:. In several network games, player i was interacting with player j with
strength given by the entry a; ; of a matrix, possibly the adjacency matrix of the underlying
graph. In a graphon game, player = feels the interaction with the ensemble of the other
players in the game through an aggregate

2(zlor) = fw(:w)a(y)dy, (4.10)

given by a weighted average of the actions «(y) of all the players as weighted by the values
w(z,y) of a graphon w € W. In order to be admissible, strategy profiles will have to be
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at least Lebesgue measurable and square integrable so that the above integral makes sense.
Since a(y) € A(y) = R¥v, in order for the definition and the manipulations of the above
integral to be sound, we assume that all the sets A(y) are contained in the same R*, which
amount to assuming that all the k,’s are the same, say k. As a result, the above integral is
understood as an R¥ valued integral defining the aggregate z(z|c) as an element of R¥.

Admissible Strategy Profiles

So according to the above discussion, we would like to say that a function o : I — R” is
an admissible strategy profile if it is measurable, sqquare integrable and «(x) € A(x) for
every « € I. Notice that we assume that « is a function defined everywhere, not merely
an equivalence class of Lebesgue measurable functions. Still, since the integral defining
the aggregate z(z|c) is with respect to the Lebesgue measure, changing a at one point,
or more generally on a set of Lebesgue measure 0, does not change the value of z. So
z(rla) = z(z]a!) if a(y) = a'(y) for almost every y € I, and despite our best efforts,
since z(x|a) only depends upon the equivalence class of the function ¢, like in the case
of non-atomic games, the set of admissible strategy profiles could be defined as the set
L 4 defined in our introductory presentation of non-atomic games, namely the subset of
elements a of L ([0, 1], dz) for which a(x) € A(x) for almost every z € [0, 1]. However,
because our analysis will strongly rely on the properties of the graphon operator on L? -
Hilbert spaces, we shall define the set of admissible strategy profiles as:

L% = {a e L*([0,1],dz; R¥); a(x) € A(z) for a.e.z € [0,1]},

In any case, if player « decides to change the value a(z) of their action while all the other
players choose not to, the value of the aggregate z(z|c) is not affected.

Costs

In the graphon game model, the costs to the individual players are determined by a single
real valued function J : R¥ x R* — R. The interpretation of J(a, ) is the following:
this value will be the cost to player x € [ if the player chooses action « (which implicitly
requires that « € A(x)) while the actions of all the (other) players amount to the aggregate
z through formula {.10).

The graphon game defined by the quantities introduced above will be denoted by
g = (A = (A(x))m€[0,1]7wa J)

Remark 4.19 While very similar in spirit, a graphon game is not an anonymous game as
we defined it earlier, the differences stemming from the definitions of the costs. Indeed, even
if one assumes that all the cost functions J* in the anonymous game model are the same,
say J, the cost to a given player has two important characteristics.

1. The significance (or insignificance) of the action of a player on the costs depends upon
the measure \. In particular, it is nil if this measure is continuous or atomless.

2. It depends upon the actions of the other players in a very specific way entirely deter-
mined by the measure \ since it is a function of the push-forward of this measure by
the players’ actions.
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On the other hand, the parallels to these properties in the case of graphon games highlight
the differences between the models.

1. Since the role of the measure \ is played by the Lebesgue measure, the action of a
single player does not impact the aggregate from which the costs of the other players
are computed.

2. For each player x, while the aggregate influencing their cost is linear in the actions of
the other players, it is not symmetric since it is the weighted average of the actions of
the other players, say vy, weighted by the values w(x, y) of the graphon: in other words,
unless w is a constant graphon, different players should feel different aggregates since
they are potentiallhy different weighted averages for different players!

Example 4.20 The min-max graphon is defined by the formula
w(z,y) =z Ary(l—zvy).

It can be used to model the interactions between players in games for which agent states
can be represented by points on a line and agents with central locations are more affected
by their close neighbors. This can be illustrated by the fact that if x = 1/2, we have:

w(1/2,y) = {

N[ N[

Y, z
(1-y), ify= 3,
confirming, at least for in this case, that the interaction is stronger with nearby players. A
useful property of this graphon is proven in the following lemma.

Lemma 4.21 For the min-max graphon we have:
lw(z,y) —w(@',y) < 2(|z —2'[ + |y = y/].
Proof: Since 2z Ay = x +y — |x — y|, we have:

Aery—a' ny=lety—lz—yl—a' -y +]" =
Sl —a'[+ ]y —y| + ||z -yl + 2" = |
Slz—a|+ly—yl+]-e+y+a’ -y
<2lz =2+ ly =/,
where we used the inequality |a — b| = ||a| — [b]|. So we proved that the map (z,y) — x A y is

Lipschitz with Lipschitz constant at most 1. We porve similarly that the function (z,y) — 1 —z vy
has the same property. Finally:

lw(z,y) —w(z',y')| Y(l—zvy — @ Ary)1 -2 vy
Y(l—zvy — @ ry)1—zvy)

+@ Ay) A=z vy) = (@ Ay)(1 -2 vy
= |(1:/\y—x'/\y/)‘(l—:rvy)—l-(m'Ay')!(l—xvy)—(l—x/ vy')}
=(lz =21+ ly=v1) + (lz =" + [y = /)

|(z A
|(z A

A

which proves the desired result. ©
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Best Responses and Nash Equilibria

In a graphon game, the best response function is the function apr : La 2 @ — apgr(a) €
(RF)[0:1] defined by:

apr(a)(z) = arginf J(o, 2(z|a)), x € [0,1]. 4.11)

aeA®

So the best response apr(a) to any admissible strategy profile av € Ly is a set value
function on [0, 1] whose values are subsets of R¥, including possibly the empty set in case
the minimum of the function J in the first variable is not attained. The definition of a Nash
equilibrium naturally follows.

Definition 4.22 An admissible strategy profile o is a Nash equilibrium for the graphon
game if for almost every x € [0, 1] (with respect to the Lebesgue measure of [0,1]), o™ () €
appr(a®)(x).

Given the above remarks about the values of the aggregate, this means that for almost every
x € [0, 1], for every « € A(x),

J(a*(x), z(z|a™)) < J(a, z(z|a™)).

Next, we tackle the question of existence and uniqueness of such an equilibrium. But
before doing so, we emphasize some of the properties of the graphon operator which may
not have been clear. Recall that given a graphon w : [0,1] x [0,1] — [0, 1], we defined
the graphon operator A* by [AY f](z) = § f(y)w(z, y)dy for f : [0,1] — R measurable
and square integrable and we hinted at the fact that the definition applied as well to R¥-
valued functions f. This extension is important because since admissible strategy profiles
take values in R*, we want to have the graphon operator act on such functions and consider
Av : L2([0,1]; R¥) — L2([0, 1]; R¥) defined by

Sen(y)w(z,y)dy
(4va)(z) = | alpulen)dy -
Son(y)w(z, y)dy
As we mentioned earlier, using the same notation for the operator acting on L?([0,1]; R)

or L2([0, 1]; R¥) should not be an issue. We state its main properties as a lemma for future
references.

Lemma 4.23 The extension AY of the graphon operator to L*([0, 1]; R¥) is a symmetric
Hilbert-Schmidt (hence compact) operator whose eigenvalues are, except for their multi-
plicities (which are at most multiplied by k), the same as those of the original graphon
operator AY when defined on L?([0, 1]; R).

Proof: The proof of these claim is obvious. We merely illustrate the changes in multiplicity of the
eigenvalues. If f € L?([0,1];R) and A € R are such that A” f = \f, then:

Aw(f707 70) = (Awf707"' 70)2(/\fa01 ao):)‘(f70, 70)
and similarly:
Aw(O,f,0,~~~ 70)=(07Awf707"' 70)=(01)\f107 70) :)‘(va707"' 70)

and so on. So A is an eigenvalue of the extended operator A* with multiplicity & if it was an eigen-
value with multiplicity 1 of the original graphon operator AY. o
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Assumptions and Preliminary Estimate

We first state the assumptions we shall use in the various steps of the existence analysis.
They are taken from [30].

Al The function J : R¥ x R* 5 (a, z) — J(a, 2) € R is continuously differentiable and
strongly convex in o with a constant £, > 0 uniform in z € R*. This means that for
every o, € R* and z € R¥, we have for every ¢ € [0,1]

Jea+ (1 —e)d,2) <eJ(a,2)+ (1 —e€)J(d,2) — é—ce(l — o) — af?.

A2 V.J(a,z) is Lipschitz in z with a Lipschitz constant £; uniform in o € RF. This
means that for every 2/, z € RF and a € R¥, we have

[Vad (0, 2') = Vad (o, 2)] < €] = 2.

A3 For every z € [0, 1], the set of feasible strategy A(z) is a closed convex subset of R¥.

The following operator will play a crucial role in the existence proof. If 7 : [0, 1] —> R¥
is a R¥-valued function defined everywhere on [0, 1], for each x € [0, 1] we set:

[BZ](x) = arginf J(a, 2(z)). (4.12)
acAr

Notice that under assumption A1, for x € [0, 1] fixed, the function R* 5 o — J(o, Z(x))
is strongly convex, and if A3 holds, this function has a unique minimum on the closed
convex set A(X). This implies that the set [ BZ](z) is a singleton, which defines a function
[0,1] 3 2 — [BZ](z) € A(X) = R*. Next, we remark that if Z and ' are two R*-
valued functions on [0, 1] which are equal almost everywhere, then [BZ](x) = [BZ'](x)
for almost every x € [0, 1].

Lemma 4.24 Under assumptions Al, A2 and A3, for every RF-valued functions f and g
which are square integrable on [0, 1] we have:

14
|Bf = Bgllie < J71f —glze- (4.13)

It is important to keep in mind the fact that f — B f is not linear.

Proof: The strong convexity assumption Al is equivalent to the fact that for every a, oo and z in
R* we have:
[Vad(a,z) = Vad(ao, 2)] - (@ — a0) = Le|a — aol®. 4.14)

which implies
|[Vad(a, z) = Vad (o, 2)| = Le|a — aol. (4.15)

Let us assume that = € [0, 1] is fixed momentarily. Using {.13)) with z = g(z), @ = [Bf](x) and
ao = [Bg](x) we get:

[Bf](z) — [Bgl(z)| < zlclvaJ([Bf](w)vg(x)) — VaJ([Byl(z), g(=))|- (4.16)

Since [Bf](z) = arginf, . 4. J(c, f(x)), by convexity we have:
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Vo J([BfI(2), f(2)) - (a = [Bf](z)) = 0

for all «v, so using @ = [Byg](x) in this inequality we get:

Vo J([Bf](z), f(2)) - ([Bgl(x) — [Bf](z)) = 0. (4.17)
Similarly, we get:

VaJ([Bgl(z), 9(z)) - ([Bf](2) - [Bg](z)) = 0. (4.18)
Adding and @.18) we get:

[VaJ([BfI(z), f(x)) = VaJ([Bf](z), g(2)) - ([Bgl(z) — [Bf](z)
[VaJ([Bg](x), 9()) = VaJ([Bf](2), g(2)) - ([Bgl(z) — [Bf](z))
le|[Bgl () — [Bf)(2)I* (4.19)
where we used the strong convexity @.14) to derive @I9). The scalar product of two elements of
R* being smaller than the product of their norms, we see that the left hand side of @I9) is bounded
from above by:

Vad (BA@). F@) ~ Vel (BF@). o) |[Bal(x) ~ [B)(@))
which, together with (.19) gives:

>
=

1B9)(&) ~ [BA@) < LIVaT (B, S@) = VaT (BI(), g(a)
< Plot) - 1(a) (420

where we used assumption A2 to derive (#.20). Since this inequality between non-negative real num-
bers is true for all z € [0, 1], we can square both sides, integrate both sides between 0 and 1 and take
square roots of both sides, proving the desired estimate (#.13). ©

The estimate (.13) of Lemma [4.24] only depends upon the definition @.I2) of the
operator B and the nature of assumptions Al, A2, and A3.

4.3.0.1 Existence of Equilibria

Using the definition of the graphon operator A", we easily see that (recall the definition
(@TT) of the best response function): if o is an admissible stragegy profile in L%,

« is a Nash equilibrium for the graphon game <= « is a fixed point of BA™.

Indeed, if a € L%, [A%a](z) = z(z|a) for almost every = € [0,1] and as a result
[BAYa(z) = arginf ¢ 4= J(a, z(x|)) for almost every = € [0, 1], and demanding that

2(
a(z) = arginf J(a, z(z|a))
aeA®

for almost every x € [0, 1] is the very definition of a Nash equilibrium for the graphon
game.

We now use Schauder’s fixed point theorem in the form recalled in Theorem [I.6] to
prove existence of Nash equilibria for graphon games. Our proof will require the following
extra assumption saying that all the sets A* of feasible actions are contained in the same
bounded subset of R*. This will provide the compactness needed for the application of
Schauder’s theorem.
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A4 The number o4, defined by:

Qmaz = SUp sup |a]
z€[0,1] ae A®

is finite.

Notice that under assumption A4, for every f € L2([0, 1], dz; R¥) and almost every z €
[0,1]. [[Bf](#)| < amaa-

Proposition 4.25 [f the graphon game G(A, J, W) satisfies assumptions Al-A4, then it
admits at least one Nash equilibrium.

Proof:  To be consistent with the notations of the statement of Theorem [[.6] we introduce the set
C = {f € L*([0,1],dz; R*); |f| < @maz}. C so defined is a closed convex subset of the Hilbert
space B = L*([0, 1], dz; R¥). Also, for every f € L?([0,1],dz;R¥), Bf € C, and consequently
BAYfeC.

Since the (vector valued extension of the) graphon operator A" is a Hilbert-Schmidt operator on
L2([0, 1], dx; R¥), recall Lemma4.23| it is a fortiori a compact operator and since C' is bounded, the
closure K of A¥C is a compact subset of L2([0,1], da; R¥). Being Lipschitz, B is also continuous
and K = BK is also compact. Consequently, the map F = BAY satisfies the assumption of

Theorem|[T.6] proving the existence of a fixed point. ©

4.3.0.2 Uniqueness

Proposition 4.26 If the graphon game G(A., J, w) satisfies assumptions A1-A3, and:

0y
e—)\maz(A“’) <1,
c
where Apmaz(w) is the largest eigenvalue of AY, then there exists one and only one Nash
equilibrium o* € L?.

Proof: If f and g are elements of L ([0, 1], dz; R*), using the Lipschitz property (@.13) and the fact
that the norm of the operator A" is its largest eigenvalue, we get:

w w EJ w w ZJ
|BA®f — BA®g|y2 < 2|A"f — A%gl12 < S Amar <1
Le Le
which proves that the map BA" is a strict contraction on L?([0, 1], dz; R¥), implying existence and
uniqueness of a fixed point. ©

4.3.1 Example of the LQ Graphon Games

Like in classical control theory and the theory of differential games linear quadratic models
provide one of the rare classes of explicitly solvable models. Let us consider a graphon
game G(A, J,w) such that A* = [0,00) for every z € [0,1] so that assumption A3 is
satisfied, and the cost function .J is given by:

J(a, z) = %az —a(az +b)
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for constants @ € R and b > 0. Clearly, the function J satisfies assumption Al with constant

{. = 1 and since:
0J (o, 2)

—a— b).
o a— (az + b)

it also satisfies assumption A2 with constant £; = a. So if the graphon w is such that:

|a[ Amax(A") < 1, (4.21)

then Proposition [4.26] implies that the graphon game has a unique Nash equilibrium. We
proceed to compute it explicitly. The best response of player « € [0, 1] to a dtrategy profile
« is given by:

apr(a)(z) = max{0, az(z|a) + b} (4.22)

where z(z|a) = 8[071] a(y)w(z,y)dy.
We distinguish two cases.

e If a > 0, the best response of each agent 2 € [0,1] is an increasing function of the
aggregate z(z|a), so the game is a game of strategic complements. Indeed, for every
xz €[0,1],a > 0and b > 0, then z(x|ar) = 0 so that d,,J (0, z(z|c)) < 0. Hence

J(a, z(zlar)) = J(0, z(z|a)) + 00 J (0, z(z]a))a + o(a) < J(0, z(x|cx))

for a > 0 small enough. So 0 cannot be the best response since the cost could be low-
ered by a small perturbation. As a consequence agr () > 0, and the Nash equilibrium
a* is internal in the sense that

a*(z) >0, forallz e [0,1].

From the form (#.22)) of the best response function, now that we know that the Nash
equilibrium is internal, we get

a*(z) = az(z|a™) + b = a[AYa*](z) + b
for almost every z € [0, 1], which implies that:
[I — aA“’]a* = bl[O,l]

and if the operator [I — aA™] is invertible, which is the case since we assume that
|a| Amaz (A™), we have:

a* =b[I —aA”] "1y = bb,

where b, is the Bonacich measure of centrality of the graphon. Recall (#.4)). The impor-
tance of this result is that, as it was already the case for finitely many player games, the
values of the Nash equilibrium are entirely determined by the geometric information
contained in the underlying graph.
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If a < 0, the best response of each agent = € [0, 1] is an decreasing function of the
aggregate z(x|a), so the game is a game of strategic substitutes. We cannot guarantee
that equilibria are internal, but under the uniqueness condition {#.21)), we see that the
unique Nash equilibrium is internal if and only if equation:

[I + ‘G|Aw]a* = bl[O,l]

has a solution a* such that a*(z) > 0 for almost every = € [0, 1]. Condition (#.21)
implies that the operator I + |a| A" is invertible, so the candidate to be the unique Nash
equilibrium is given by:

a=>b[I+ \a|Aw]*11[0’1],

but we cannot be sure that it is internal, and hence the fixed point of the best response
function, since the sign of the sum of the Taylor series expansion:

o = b(1 = lal A" 10,1y + —laf2(A") 10,17 — a*(A") 1o, + -+ )

cannot be determined for every = € [0, 1] without more information.

4.4 GAMES OF COORDINATION AND INFORMATION ACQUISITION

4.4.1 Coordination and Information Acquisition: Beauty Contest

We present a game model studied in [27]]. We chose it to illustrate the use of families of
independent random variables to model signals informing players in a game. This particular
example is an instance of a game model studied by Morris and Shin under the name of
beauty contest. As all the games we considered so far, the game is a one-shot game in
which a continuum of players take actions simultaneously. When information is costly,
agents must balance the cost of information against its benefits. The latter depend on the
likely actions of the other agents and the information they acquired.

We model an industry in which the supplier’s product demand depends upon:

an uncertainty state of the market place (e.g. size of customer base);
the supplier own price;
average price of the supplier’s competitors.

To improve decision making a supplier relies on a survey of the market conditions. The in-
formation is transmitted through signals which can be private or public. So the information
can be exogenous or endogenous.

This is the description of the specific example from [27]].

Players are represented by real numbers £ € [0, 1]. They act simultaneously.

Player ¢ chooses an information acquisition policy z, € R’} . The integer n is the number
of sources of information. For each source i € {1,...,n}, z;; represents the attention
paid by player ¢ to the source i.
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e After the choice of zy, the player observes a vector 2y = (g1, . .., Zs,) € R™ of signals
which inform the player about an unobservable variable 6. The precision of the signals
depending upon the choice of zy;.

On the basis of this information, player ¢ then takes action ay € A = R.

Player ¢ uses pure strategies (z¢, ag) with z, € R% and a, : R™ — R. Their actions are
of the form oy = ag(xy), so the action o, taken by payer ¢ is a feedback function of the
signal x, acquired by the player.

e The cost to player £ € [0, 1] is defined as:

ue = C(ze) + (1= 7)(ae = 0)* + (e — @)°

where C' : Ry — R is differentiable and increasing, v € [—1, 1] and @ represents the
average action, namely
1
o= f apdl.
0

v € (—1,1) is a parameter which balances the cost of aligning the action of player ¢
with the others (coordination) and matching the state variable (the fundamental motive
of the game). The term (a, — @)? represents the coordination with the other players: if
v > 0, each player will want to choose an action as similar as possible to the average
action of their peers . On the other end, if v < 0, each player tries to behave differently
than others.

Remark 4.27 Note that from a pure mathematical point of view, in order for the aver-
age action @ to be well defined, we need to assume that the function [0,1] 2 £ — «ay is
measurable and integrable.

According to our terminology, the present game model should be called a mean field
game because the actions of the other players enter the cost to a given player through their
mean as given by their plain aggregate. Indeed, as we argued earlier, the above integral
should be understood in the context of games with a continuum of players, as the equivalent
of the empirical mean in the case of games with finitely many players. We shall come back
to this interpretation in the next section.

Signals: the Sources of Information

Players start the game with no knowledge of the value of #. Obviously we could put a prior
distribution on the set of possible values of . We shall not do that here for the sake of
simplicity. The signal observed by player ¢ from source ¢ is assumed to be of the form:

T =0+ + €

where 7; ~ N(0,?) and e, ~ N(0, i), all these Gaussian random variables being

Zei
independent, and «;, &; are constant.

e In other words, we assume that each signal source has its own sender noise which we
denote by 7; = 6 + 1; and which are assumed to be Gaussian and have precision 1/x?.
The noise term 7); stands the intrinsic noise of the information source i.
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If player ¢ chooses to pay attention to source i, they do so imperfectly, adding an id-
iosyncratic noise term €y;, so that xy; = Z; + €y;, which represents the part of the noise
brought by the player. We also notice that the variance of €y;, namely £2/2;; depends
upon the constant &; and is inversely proportional to the attention zy; that player ¢ pays
to the source of information . In other words, the more attention player ¢ gives to signal
source ¢, the less the noise they incur.

We highlight the independence assumption because we intend to revisit it within next

section.

Assumption 1. We suppose that n; and ey; for i € {1...,N} and £ € [0,1] are all inde-
pendent.

Dependencies between the Signals

Let us look at the covariance of the signal observations of the same information source
from different players. If £ # ¢', we have:

cov(xp;, xei) = E (2o — Elzg]) (e — Elxe])]
= E[(n + €0)(ni + €04)]
= E[n;] + E[mieri] + Elecin] + Elesieps]

=

and if we denote by pggr; the correlation between xy; and x4, since xg; ~ N (6, ot?i) with

2

02 = K? + &2 /24, the fact that cov(xe;, x;) = peeiorioe;, we conclude that:

2
Ky

Peeri = > RN
V(2 + ) (2 + £

i

Remark 4.28

If a player pays more attention to information, then the precisions of the corresponding
observed signals increase (zy; increases), which will also lead to an increase of the
correlation pyg; between this player and the others.

If & = 0 or zg; — o0, then pge; — 1. In this case, we say that the signals are public,
i.e. the observations xy; are the same for all the players.

When k; = 0, then py; = 0, and since the signals are jointly Gaussian, they are
independent and in this situation, we say that the signals are private.

In this model, in general we have 0 < pgy; < 1 and the signals are endogenous since
they depend upon the decisions of the players.

Equilibrium Analysis

First we recall the definition of the strategies in the model.
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Definition 4.29 For player ¢ € [0,1], a strategy is a couple (z, as) where z; € R'} and
ag : R™ — R. A strategy (24, ay) is of feedback form if the action taken by player { satisfies

Qy = ag(xg).

where xy is the signal observed by player £.

Searching for Nash equilibria in the full generality of the model is highly difficult and
technical, so we shall limit our search to a subclass of equilibria for which we can take
advantage of special features of the models.

Definition 4.30 The game is said to be symmetric if all the players use a common strategy
(z,a).

For any given ¢ € [0, 1], suppose that player ¢ choses a strategy (z¢, a;) while all the
other players ¢’ # ¢, use strategy (z, a), then the cost to player £ is given by:

J (20, a0), (2—¢,a—¢)) = Elug] = C(z0) + (1—7)E[(cr — 0)*] +yE[ (e —@0)?] (4.23)

where

1
a = J a(ze)dl. (4.24)
0

since all the players but possibly one use the same strategy (z, a).

Remark 4.31 The definition of @ seems to say that it should be a random variable because
x¢ are random variables for all £ € [0, 1]. In order to understand clearly the issue which
needs to be addressed here, we momentarily come back to the case of a game with N
players with observations x1, . .., x N and { € [N]. We can still assume that x¢; = 0 +n; +
€¢;. Then in this case:

1Y 1
a=— > ar=— > alx) ~Ela(z)]
N N

if we use the standard law of large numbers to replace the last average by the expectation
of a random variable having the same distribution as those random variables appearing in
the averages. Because of the law of large numbers, & is deterministic in the limit of large
games.

If we come back to the definition of & in the continuum of players case, for & to
be deterministic, it should be equal to its expectation and if the random variables x¢ are
defined on a probability space (§2, F,P), and if we can use Fubini’s theorem to interchange
integrals, we should have:

1

7 - E[a] - L 2( L 1 a(ee)dt ) B(dw) = L (La(w)ﬂv(dw))de

= f Ela(z)]dl = E[a(z)]

0

if x is a random variable with distribution equal to the common distribution of all the xy.
So it seems that if we have a continuum of independent random variables with the same
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distribution, the law of large numbers seems to give the same result as the application of
Fubini’s theorem. However, before one can apply any form of Fubini’s theorem, one would
need to make sure that the function ({,w) — a(xz¢(w)) is jointly measurable on [0,1] x 2.
This is not a given and we address this issue in the next section.

While restricting ourselves to symmetric models already made the analysis more man-
ageable, the identification of Nash equilibria is still out of reach. For this reason, we further
limit the search to a subclass of strategies. From now on, we shall search for symmet-
ric Nash equilibria among linear strategies. To be specific we limit ourselves to feedback
functions of the form:

= 2 anit; (4.25)
=1

with > | az; = 1. Then since we look for symmetric equilibria we compute the average &
with a common strategy a for all players (except possibly one). Consequently we compute
@ with a strategy a : R 32 — 3" | a;x;; € Rand zg; = 0 + 1; + €4, so that:

1
a:f aze)dl! —f (Z a;zp; ) ar
0
1 n
= f ( ai(G +n; + 6@/0) ae’
0 \;=1

(2

=0+ i a;n; + fl (i aiem) av
i=1 0 \4i=1

=0+ aim
i=1

where the last equality is due to the fact that

1
J Eg/idgl =0
0

which cannot be justified yet, still, recall the content of the above Remark [4.31] but which
follows from the exact law of large numbers which we shall prove in the next section.
Consequently:

E[(gamwi—a ]= [Zafzelz+z ag —a 7% ]

n 2 n
ag 5
= Z G50 4 N ag — i)k}
i=1 i=1

So returning to formula (@.23)) and using the fact that the function a is linear, recall {.25),
we get:
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J€(<Z€a af)v (27[, a,g))

=C(z)+ (1 - ’y)IE[(i GpiToi — 9)2] + vE[(i QpiTp; — 6)2]

=1
=C(z) + [Zaezx&—ﬁ ]+v2 “/ Eah_az I
= Clz0) + Z az,[(1—7)r; + 5] +7 Y (ag — a;)*k? (4.26)
i v i=1

One of the main reasons for the presentation of this game model was to motivate the
study of Fubini extensions and the exact law of large numbers presented in the next section.
This goal being essentially attained, we do not pursue the detailed analysis of the model.
For the sake of completeness, we state without proofs the main results of the paper [27]
giving an almost complete characterization of the linear symmetric Nash equilibria of the
game.

If we rewrite the right hand side of as C(z¢) + JM (24, a0) + JP (24, a), using
the fact that the function C' is convex, one can show that in a symmetric equilibrium (for
which the last part J(*)(z,a,) disappears from the optimization), each players tries to
minimize C(z) + J® (2, ar), leading to the useful characterization of these equilibria.

Lemma 4.32 A strategy (z, a) is a symmetric Nash equilibrium if and only if it solves the
minimization problem

n 2
(z,a) € arg inf Z — kI + &

(za)l 1

EA RO

under the constraint Y, a; = 1.

Finally, the result of the above lemma can be used to prove:

Proposition 4.33 The exists a unique symmetric linear Nash equilibrium (z*,a*), and in
this equilibrium, the influence o} of the i-th signal and the attention 2 paid to it satisfy:
vy afé; ) 1

and zf = ——=—— with

D YRR NI T Q)R+ &

where 1; is set to 0 whenever z} = af = 0.

4.5 FUBINI EXTENSIONS AND THE EXACT LAW OF LARGE NUMBERS

The models of non-atomic games presented in the previous section raise a few delicate
mathematical questions. Indeed, by considering games for which the players are labelled
by elements 7 of an uncountable set I, this set I being equipped with a o-field Z and
a probability measure A which is assumed to be continuous (i.e. non-atomic), one may
wonder if objects like (e;);er exist if one requires the €;’s to be independent identically
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distributed mean-zero random variables, and if one expects to be measurable functions of
the variable ¢ (for example if we want to integrate over ¢ to consider continuous averages)
and possible use a form of law of large numbers to capture the properties of the empirical
distribution of these random variables.

This type of uncountable sequence (please pardon me for the oxymoron) of random
variables is what is usually called a white noise. While very popular in modeling circles, it
is much less so among mathematical purists, and we are about to see the reasons why.

The goal of this section is to present the mathematical tools from real analysis and
measure theory which were developed in part to address these questions.

Over fifty years ago, economists suggested that the appropriate model for perfectly
competitive markets is a model with a continuum of traders represented by elements of
a measurable space. In such a set-up, traders are treated as price takers as it is assumed
that their individual influence on the prices is negligible. In such a set-up, summation or
aggregation is generalized by the notion of integral. In games with a continuum of players,
the latter are labelled by the elements ¢ € I of an arbitrary set I (often assumed to be
uncountable, and most often chosen to be the unit interval [0, 1]) equipped with a o-field
7, and a probability measure \. So if the state of each player ¢ € I is given by a random
variable X on a probability space ({2, F,P), in analogy with the countable case leading to

formula (4.28)), the quantity:
F,(z) =A{iel; X'(w) <z}) 4.27)

appears as a natural generalization of the proportion of X'(w)’s which are not greater
than x, in other words, of the cumulative distribution function of the empirical distribution.
And if the X?’s were to be independent with the same distribution, it would be reasonable
to expect that a generalization of the Law of Large Numbers to this setting could hold.
However, as we explain in the next subsection, measurability issues get in the way, and
such a generalization is, when it does exist, far from trivial.

4.5.1 Kolmogorov Extension Theorem

Definition 4.34 Let E be a Polish space (i.e. a space which is homeomorphic to a separa-
ble complete metric space) and let £ = B(E) be its Borel c—field. If I is an arbitrary index
set, and if for each finite tuple (iy, ..., i) € I*¥ we have a probability measure By ,onin)
on (B x - xEy, & ®...Q&,) where E;;, = Eand &, = & forj = 1,...,k, we
say that the family of probability measures { Ky, )} is consistent if:

Tk

1. foreach {i1,... it} c I and each permutation 7 of {i1, ..., i}, we have
-1
/'l’(’il,‘..,ik) = /J’(Tr(il),...,ﬂ'(ik)) o <p7'r

where Or(Tr(iyys - Tr(in)) = (Tiy, ooy Ty )
2. foreach {iy,..., i, ixs1} < I, forany Ae & Q- QRE;,,

,u(il,...,ik)(A) = M(z’l,...,ik,z’kﬂ)(A X E)
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To be more specific one may want to think of E as one of the spaces we will use
the result of Kolmogorov’s theorem stated without proof below. These spaces could be,
and will be, R, R%, a separable Hilbert space like L? or a more general separable Banach
space like LP with 1 < p < oo cor the space C([0,T]; B) of continuous (hence bounded)
functions from the interval [0, 7] into a real separable Banach space B. We state without
proof the fundamental existence theorem of Kolmogorov. Most introductory textbooks of
measure theory based probability provide a proof. For the sake of definiteness we refer the
interested reader to [5].

Theorem 4.35 (Kolmogorov existence theorem) If 2 = E' is the product of copies of
a Polish space E and can be interpreted as the set of all the functions from I into E, if
F =& with &1 = ®,e1 Ei is the product o—field of copies of the Borel o-field of E,
and if i = {1, ,..i,)} is a consistent family of probability measures, then there exists a
probability measure P, on (£2, F) such that if for every i € I and every w € {2 we set

X'(w) = w(i)
for the E-valued i-th coordinate map, then for every {i1, ..., ix} S I we have
L:]P’” (Xila cee aXik) = H(iq,.iz)

As usual, we denote by Lp(Z) the law (distribution) of the random variable or random
vector Z under the probability P.

Remark 4.36 So given a set of consistent finite dimensional probability distributions over
an arbitrary index set I, ONE CAN ALWAYS construct a probability space ({2, F,P) and
a stochastic process (X*)ier on this probability space such that the finite dimensional
marginals of the process are the probability measures we started from.

Kolmogorov’s theorem laid the foundations of the theory of stochastic processes on a
firm mathematical ground, and gave mathematicians the option to make completely rig-
orous a good number of intuitive arguments about the properties of these processes. In-
deed, the latter are often introduced through specific properties of their finite dimensional
marginal distributions, and Kolmogorov’s existence theorem guarantees the existence of
processes defined in this way. Basic examples include:

e The process of Brownian motion.

e The Poisson process.

e White noise processes introduced as independent and identically distributed families
(X%)ser of random variables with given common distribution z € P(E).

4.5.2 Structure of Product Sigma Fields

Kolmogorov’s theorem has the merit of resolving the existence problem for stochastic pro-
cesses. Still it is not without shortcomings, and as we are about to see, it is extremely
unsatisfactory when it comes to manipulations of the process so constructed. To illustrate
this important point, we first discuss the fine structure of the product o-field £/ = X) i1 Ei
with & = £ forall i e 1.
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Recall that the product o-field is the smallest o-field containing the measurable cylin-
ders defined as the subsets of {2 = ET of the form:

{we 2 w(ij)e A, j=1,...,k}e&".

for a finite subset {i1,...,ix} of I and A, ,...,A;, in £. As such, the product o-field
appears as the o-field generated by the marginal coordinate projections.

For convenience, we recall the definition of a o-field generated by a family of sets or
functions.

Definition 4.37 For an arbitrary space (2, an arbitrary index set I, and a measurable
space (E, ), let us assume that {Z*}cr is a family of functions Z* : 2 — E. We denote
by F = o{Z" : i € I} the smallest o-field F of subsets of (2 for which Z' is (F,&)
measurable for all i € I. In other words, F is the smallest o-field F of subsets of §2
containing the sets (Z*)~Y(B) foralli € I and B € £.

Let us now consider an arbitrary index set I and for each ¢ € I, a measurable space
(E;, ;). When we discuss white noises later on, we will be specially interested in the
special case E; = F and &; = £ for a given measurable space (E, £). The product space
is denoted by Hie 1 B, or sometimes x;crE;. As we already did earlier, we shall denote
the coordinate functions by (X*);e; where X' : [,_; E; — E is defined by

XZ((.L)) = Wi, Vw= (w,;),;ej (S nEz

el

When all the E; are equal to the same F, the product is denoted by E”. It can be identified
to the collection of all the functions from I into E. In this case we often use the notation
w(i) for w; to emphasize that fact. It is plain to show the following result which we state as
a lemma for the sake of definiteness.

Lemma 4.38 The product o-field X),_; E; is the smallest o—field of subsets of ET that
makes the coordinate projection function X* measurable for all i € I. Namely

QR E =o{X" iel}.
el

The result of the next lemma states in a different context the same property of the
product o-field.

Lemma 4.39 Ler (£2,F) be a measurable space and I be an arbitrary index set, (E,£)
a measurable space, and (Y*);c1 a family of functions from (2 into E. We define £ : 2 3
w — £(w) € BT such that

E(w)(i) = Y(w), 1el, we .
Then & is (F, EL)-measurable if and only if for all i € 1, Y is (F,E)—measurable.

In fact, o{Y?; i € I} is the smallest o-field F satisfying the assumptions of the above
lemma. The next result is the main property of o-fields generated by families of functions
(and hence of product o-fields) which we use in our analysis of white noises later on.
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Proposition 4.40 Ler {2 be an arbitrary set, I an arbitrary index set, (E,E) a measurable
space, and (Y*);c a family of functions from §2 into E. Then the following two properties
hold:

1. Forevery Ae o{Y"; i€ I} and every w € A, if there is another w' € {2 satisfying
Yiw)=Y" ), Viel,

then W' € A.
2. Forany A € o{Y"; i€ I}, there exists a countable subset J < I such that

Aeo{Y?; je J}.

Proof: 1. The proof of the first claim follows from the following fact. If we denote by G the family
of elements A € o{Y"; i € I} such that for every w € A, if there is another ' € §2 satisfying
Y¥(w) = Y¥(w') forall i € I, then w’ € A, it is easy to show that G is a o-field on its own, and by
construction, G cr{Yi; 1 € I}. On the other hand, if ¢ is any element of I and B any element of
&, itis obvious that if w € {Y € B}, namely if Y (w) € B, and if Y¥(w) = Y*(&') foralli € I,
it is also true for i = o so that Y (w') € B which proves that {Y® € B} € G. So Y™ is (G, &)
measurable, and £ < G since £ is the smallest o-field with this property.

2. The second claim means that

F=o{Yiiell= |J ofY’;jeJ}
J<1I,J countable
We prove this equality in the same way as above. Let denote by G the right hand side. It is obvious
that G < F. To prove the other inclusion, we show that G is a o—field, and since all the Y? are
G-measurable, this will imply the desired inclusion. The only non-trivial property to show is the
countable union property. So let (A, )»>1 be a countable sequence of elements in G. For eachn > 1,
there exists a countable subset J,, < I such that A,, € U{Yj; Jj € Jn}.Let J =, Jn. Then J is
also a countable subset of I. Moreover, for alln > 1

Anea{Y’; je o,y S ol{Y; je J},
which is a o-field, and hence

UAHGU{Yj;jEJ}QQ

which is what we wanted to prove. ©

4.5.3 Measurability of White Noises

We now return to the construction of white noises on product spaces as given by Kol-
mogorov’s extension theorem.

Let (I,Z, \) be a probability space, F a polish space and let y € P(F) be a probability
measure on the Borel o—field of F.

Kolmogorov’s theorem says that (even if I is only a set without special structure) on the
product space (2, F) = (BT ,B(E)! = ®),.; B(E)), there exists a probability measure
P = IP,, such that if we denote by X i for i € I the i-th coordinate projection, namely

X':Q3w—w(i)eE,



78

4 Non-atomic Games

then for each i € I, X* is (F, B(E))-measurable, the law Lp(X?) of X¢, namely the push
forward probability measure P, o (X*)~! is equal to y, in other words:

LX) =P, o (X)) =4,

and (X%);c; are independent (i.e. any finite subset X, ... X% are independent). The
stochastic process (X?);c; is called a white noise as it comprises independent and identi-
cally distributed random variables.

The following lemma, due to Doob (1953), indicates the inadequacy of the product
o—filed F for the analysis of white noises. We recall that the above o-field F is generated
by the cylinders.

Lemma 4.41 Assume that I = [0,1], (E,€) = (R,B(R)), and for any function h :
[0,1] — E we define the set:

My, = {we 2; XY (w) = h(i) except for at most countably many i € I}.
Then M}, has P-outer measure 1.

Proof: LetAe F =18 (E)[U’l]. Then according to Proposition A is determined by a countable
subset I4 < I in the sense that if w € 2 and w' € (2 satisfy w(i) = w'(i) forall i € 14, thenw € A
if and only if W’ € A.

Now suppose that 01, = A, and pick any w € £2. We construct w’ € {2 such that

O
w (@) = {h(i) i¢Ia.
Since w’(i) = h(i) except for countably many i € I, we have w’ € 9. Since M), = A, we have
w’ € A, and since w'(i) = w(7) forall i € I 4, then w € A from the property of the o—field F. This
means that A = (2. Hence, the outer measure of 91, takes the value

P*(9,) = inf P(A) =P(Q) =1,

My, CA
which completes the proof of the lemma. ©

Remark 4.42 The above lemma has striking consequences. Among them:

The space of E-valued continuous functions C(I; E) is not in F.

o A set A C 2 cannot belong to F unless there exists a countable set I, < I such that
Sor any w,w’ € §2 satisfying w(i) = w'(i) for all i € I4 we have w € A if and only if
w' € A

e [fwe define a process of Brownian motion and a Poisson process as processes with in-
dependent increments with mean zero Gaussian and Poisson distributions respectively,
and we construct them on the above product probability space using Kolmogorov’s the-
orem, the sets of typical sample paths of these processes are not in F, in other words,
they are not measurable for this product o-field.

Remark 4.43 Let us assume that I = [0,1], T = B(I) and X is the Lebesgue measure on
[0,1].
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o Let us assume that h : [0,1] — R, viewed as an element of R!, is not Lebesgue
measurable (no measurable function is equals to h A-almost everywhere), then all the
elements of M}, are non-Lebesgue measurable. Then if we denote by N the set of non-
Lebesgue measurable functions, we have:

P*(N) =1, so that P, (N€) = 0.

Notice that N is the set of Lebesgue measurable functions.
e Leth:[0,1] — R be a Lebesgue measurable function, then all elements of My, are
Lebesgue measurable, so that

P*(N€) = 1.

Thus, we can conclude that N¢ is not P—measurable.

4.5.4 Fubini Extensions

The following material is in large part lifted from Section 3.7 of [11]] which was intended
to give a game oriented presentation of the results of [37].

The classical Glivenko-Cantelli form of the Law of Large Numbers (LLN) states that if
F denotes the cumulative distribution function of a probability measure on R, if (X™),>1
is an infinite sequence of independent identically distributed random variables on a proba-
bility space (§2, F,P) with common distribution y, and if we use the notation:

1

F,(z) = limsup N#{n e{l,--- ,N}: X"(w) < x}, reR, we 2, (4.28)
N—0

for the proportion of X™(w)’s not greater than x, then this lim sup is in fact a limit for all

x € Rand P-almostallw € 2, and P[{w e 2: F,(-) = F}] = 1.

In this section, we use a fixed probability space I,Z, \) for the index set of families of
random variables. Most often we shall use I = [0, 1], Z = B([0, 1]) its Borel o-field, and
the Lebesgue measure for A. If F is a Polish space, for each probability measure u € P(E),
Kolmogorov’s theorem can be used to construct on the product space 2 = E' equipped
with the product o-field F of copies of the Borel o-field of FE, the product probability
measure PP for which the coordinate projections (X? : 2 3 w — X*(w) = w(i) € E)er
become independent and identically distributed with common distribution p on the prob-
ability space ({2, F,P). As we saw in the previous section, the sample paths I 3 i —
X'%(w) € E are pretty rough functions since they are (for P-almost w € §2) nowhere con-
tinuous and not even measurable.

Hence, this construction of a continuum of independent identically distributed random
variables leads to irregular structures lacking measurability properties. The following defi-
nition offers an alternative which keeps most of what is needed from the independence.

Definition 4.44 If E is a Polish space, a family (X*);c; of E-valued random variables is
said to be essentially pairwise independent if, for \-almost every i € I, the random variable
X' is independent of X7 for X-almost every j € I. Accordingly, if these random variables
are real valued and square integrable, we say that the family (X*);c1 is essentially pairwise
uncorrelated if. for A-almost every i € I, the correlation coefficient of X* with X7 is 0 for
A-almost every j € I.
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One may wonder if essentially pairwise independent families (X%);c; can be con-
structed on probability spaces ({2, F,P) so that the process X : [ x 2 3 (i,w) — X*(w)
satisfies relevant measurability properties. To do so, we shall construct such processes on
extensions of the product space (I x 2, Z® F, A\®P), which are called Fubini’s extensions.

Definition 4.45 If Z[X| F is a o-field containing T ® F and A[X|P is a probability measure
on (I x 2, IXF), then (I x 2, Z[XIF, \XIP) is said to be a Fubini extension of (I x 2,T®
F,A®P) if. for every measurable and \X|P-integrable X : I x 2 5 (i,z) — X'(w) € R,
we have:

1. for M-a.e.i € I, 2 5w — X'(w) is a P-integrable random variable, and for P-a.e.
we 2, I 31w X(w) is measurable and \-integrable;

2. I3iw— §, X"(w)dP(w) is measurable and X-integrable, and 2 3 w — §, X" (w)dA(i)
is a P-integrable random variable, and:

L (L X' (w)le’(w)> dA(i) = L (L X (w)dA(i)) dP(w)

- X (W)d(ARKP)(i,w).
Ix$2

(4.29)

In the sequel, we shall use the standard symbol E for denoting the expectation under
the sole probability P.

Measurable essentially pairwise independent processes X are first constructed in such
a way that, for each ¢ € I, the law of X % is the uniform distribution on the unit interval
[0, 1]. Then, transforming a uniform random variable into a random variable with a given
distribution using its quantile function, we easily construct measurable essentially pairwise
independent Euclidean-valued processes with any given prescribed marginals. So the ac-
tual problem is to construct rich product probability spaces in the sense of the following
definition.

Definition 4.46 A Fubini extension (I x £2,TXF, AKX P) is said to be rich if there exists
a real valued T [X] F-measurable essentially pairwise independent process X such that the
law of X is the uniform distribution on [0, 1] for every i € I.

We refer to the Notes & Complements at the end of the chapter for references to papers
giving the construction of essentially pairwise independent measurable processes on Fubini
extensions.

The following gives a simple property of rich Fubini extensions.

Lemma 4.47 If the Fubini extension (I x 2, TX F,AXIP) is rich, then X is necessarily
atomless.

Proof: We shall argue by contradiction. If A € Z, with A(A) > 0, is an atom of (I,Z, \), then, for
P-a.e. w € (2, the function I 3 7 — X*(w) is A-a.e. constant on A. So for P-a.e. w € {2 and A-a.e.
1€ A,

X = | X5,
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and using the Fubini property (#.29), we deduce that for A-a.e. i € A, the random variable {2 5 w
X*(w) is P-a.e. equal to the random variable 6 : 2 3 w — {, X7 (w)dA(j)/\(A). Also, for any
event B € F,

P[0 e B] = AKP[(i,w) e I x 2: X'(w) € B]

= J P[X" e B]d\(i) = Leby(B),

proving that 6, as a random variable on (£2, F, ), has the uniform distribution. In particular, E[6?] =
1/3.

. On the other hand, we know that, for almost every ¢ € I, the function I x {2 > (j,vw). —
X' (w) X’ (w) is Z [x] F-measurable. Also, by the Fubini property, the function I 3 j — E[X"X7]is
integrable with respect to A and

f E[X X7)dA(j) = E[X"0]. (4.30)

Now, we observe that the function I x 2 3 (4, w) > X (w)B(w) is also Z X F-measurable. Hence,
I 5i— E[X"6] is integrable with respect to A\ and

f E[X'0]d\(i) = E[0*] = =.

The contradiction comes from the fact that, for almost every i € I, X* is independent to X7 for
almost every j € I. In other words, the left-hand side in {#30) is equal to:

LE[Xin]dA(j) = ALA L E[X |E[X7]dA(j) = i,

which gives the desired contradiction. ©

We recall the following lemma from real analysis. A proof can be found in [11, Lemma
5.29].

Lemma 4.48 Let E be a Polish space, 3¢ : [0,1] x P(E) — E measurable such that
Vv e P(E)
Leboy(-,v)™t =v.

Given the result of the above lemma, we can prove the following crucial property of
rich Fubini extensions.

Proposition 4.49 If the Fubini extension (I x 2,7 X F, XX P) is rich, if E is a Polish
space, and if u : I — P(E) is T-measurable, then there exists a T [<] F-measurable E-
valued essentially pairwise independent process Y : I x {2 — FE such that for A-a.e. i € I,
Po Yiil = .

Proof: Define Y (i,w) = ¥(X*(w), u;) where X = (X%)er is an essential white noise with
marginal distribution the uniform distribution over [0, 1]. For i € I fixed, the mapping w — X*(w)
has a uniform distribution on [0, 1], i.e. £(X"*) = Leb([0, 1]). Since (-, ;) takes the uniform
distribution on [0, 1] into u;, we conclude that Y* has distribution p;.

Since for A—a.e. i € I, X" is independent of X7 for \—a.e. j € I, this implies that for A—a.e.
i€ I,(X", u)is independent of 4)(X7 u;) for \—a.e. j € I, which shows that Y is a white noise
with the desired properties. ©
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Remark 4.50 It is very important to realize that Fubini extensions do not provide a
panacea to all the measurability problems of continuous white noise. It is a fact that, if
X = (X?%);es is essentially pairwise independent with values in a Polish space on a Fubini
extension (I x 2, IXF, \KIP) and if I = [0,1] and (I,Z, \) extends ([0, 1], Bo 11, A) then
the set of w € (2 for which the sample function I 3 i — X"(w) is Lebesgue measurable
has P-probability 0.

4.5.5 The Exact Law of Large Numbers

An exact law of large numbers can be proven on Fubini’s extensions. In a weak form, this
law can be given in the following wasy.

Theorem 4.51 Let X = (X');c; be a measurable square integrable process on a Fubini
extension (I x 2, T[X1F, AKX P). The following are equivalent:

(i) The random variable (X i)ie 1 are essentially pairwise uncorrelated;

(ii) For every A € T with A\(A) > 0, one has for P-almost surely in w € (2:

L X (w)d\(i) = JA E[X]dA(4).

Proof: First Step: We first check that if Y = (Yi)ie rand Z = (Zi)ie 1 are measurable and square
integrable processes on the Fubini extension (I x 2,7 [x] F, A [X] P), and if we set X"/ (w) =
Y (w)Z’ (w) fori,j € T and w € £2, then 2 3 w — X" is P-integrable for M-a.e. i € I and
j € 1. Now, proceeding as in the proof of Lemma [#.47] and using the Fubini property of the space,
we easily check that, for A-a.e. ¢ € I, the function I 3 j — E[X"7] is M-integrable, that the
function I 30— §,E[ [X"I]dA(j) = E[Y" §; Z7d(j)] is A-integrable, that the function 2 5 w
(§; Y'(w)dA(@))(§, Z7 (w)dA(j)) is P-integrable and that:

E[(L Yi(w)d)\(i)) (L Zj(w)d)\(j))] :L(L ]E[Xi’j]d/\(i))d)\(j). @31)

Second Step: Let A, B € Z, and let us define the processes Y = (Yier and Z = (Z%)ser by
(Y= 140) (X" — E[XZ]))Z-GI and (Z* = 1p(:)(X* — E[X"])):er respectively. Applying
from the first step we get:

L L E[(X" - E[Xi]) (Xj - E[Xj])]d)\( YdA(F)

- ]EUA (Xi - E[Xi])dA(i) JB (Xj - JE[Xj])dA(j)}

and the implication (i) = (ii) follows by taking B = A. On the other hand, if we assume that (ii)
holds, equation 32) implies that:

JJ Xl—]E ])(Xj—IE[ ])]d)\()d/\()

for all A, B € Z. The set A € Z being arbitrary, we conclude that:

(4.32)

JB ]E[(Xi - ]E[Xi]) (Xj - E[Xj])}dk(j) =
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for A-a.e. ¢ € I. So for A-a.e. i € I, B € 7 being arbitrary, we conclude that:
E[(Xi - E[Xi]) (Xj - ]E[Xj])] -0

for A-a.e. j € I which completes the proof. ©

Theorem provides a form of the weak law of large numbers for essentially pair-
wise uncorrelated uncountable families of random variables. Here is a stronger form for
essentially pairwise independent families of random variables.

Theorem 4.52 Let F be a Polish space and X = (X i)ie[ be a measurable E-valued
process on a Fubini extension (I x 2,7 [x] F, A X P) such that the random variables
(X%)ier are essentially pairwise independent. Then, for P almost every w € (2 and for any
B in the Borel o-field B(E),

AM{ielI: X" (w)e B} = J P[X" € B]dA(3).
I

Of course, we may choose E as a Euclidean space, in which case we get a strong form
of the exact law of large numbers for essentially pairwise independent families of random
variables with values in R?, for some d > 1. By choosing F as a functional space, the same
holds true for a continuum of essentially pairwise independent random processes.

Finally, we can also derive conditional versions of these exact laws. We do not give
the details here because we want to keep the presentation to a rather non-technical level
since our motivation is merely to connect our approach to mean field games to the existing
literature on games with a continuum of players. The interested reader is referred to the
Notes & Complements at the end of the chapter for references.

4.5.6 More Unexpected Behavior and finally, a Positive Existence Result

In this final section, we assume that the probability space ({2, F,P) is the product probabil-
ity space constructed via Kolmogorov’s existence theorem from a Polish space E equipped
with its Borel o-field Bg and a fixed probability measure p, the index set of the product
being the unit interval I = [0, 1]. Recall that using a notation introduced earlier, P = P,,.

First we address the following natural question: Can the product probability space
(2, F,P,) be a component of a Fubini extension together with the unit interval I = [0, 1]?
The following result gives a negative answer to this question.

Proposition 4.53 For I = [0, 1], there is no atomless probability space (I,Z, \) satisfying

o (I x N, TKF,\XDP)isa Fubini extension with marginals (I1,Z,\) and (12, F,P)
with P = P,
o X = (X% is Z[X| F measurable.

Proof: Suppose that such a Fubini extension exists and try to reach a contradiction. Take £ = R,
B a non-empty interval in E such that 4(B) < 1 and ¢ € B. We define two functions h : [ 3 i —
h(i)=ce Eandg =10 X : I x 2 — E, so that for every (i,w) € I x {2,

lif X' (w)eB
0 otherwise.

g(i,w) = {



We prove that P(915) = 0, contradicting the result of Lemma
Notice that g is bounded and Z [x] F measurable since X is, and (g(%, -))ser inherits the indepen-
dence properties of X. So by the exact law of large numbers,

Xogo' =(A®P)og™!

for P-almost every w € 2, where g, = g(+,w) for w € (2. Evaluating both sides on B, we get
Mga'(B) = ARIP) (9~ (B))

for P-almost every w € {2, or equivalently
A{iel; X'(w)e B}) = J/\(di)g(i,w) = f/\(di)IP’(dw)g(z’,w) = J)\(di)u(B) =pu(B) < 1.

So for P-ae. w € 2, X (w) = w(-) ¢ My. This is because if w € 2 such that X 1M, then
X%(w) = h(i) = c except for countably many i € I, hence for A-almodt every i € I, and since
h = cand ¢ € B, we conclude that A(X (w) *(B)) = 1. X‘(w) € B. If that were to happen
except for countably many ¢, then A—measure of those ¢’s would be 1 since A is atomless. Hence
P(9M) = 0 which gives the desired contradiction. ©

Still, the following result comes to save the day.

Proposition 4.54 There exist an atomless probability space (I Z, 5\) and a probability
space (92, F, P) extending (2, F,P,,)such that

(i) There is a rich Fubini extension (I x {2, IRF,A I@)

(ii) The coordinate process X = (X")e; is I <) F-measurable.
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Signals and Correlated Equilibria

Summary. We first review the abstract set-up of the search for mixed Nash equilibrium and we
extend this notion to correlated equilibrium. This generalized form of equilibrium seems to have
been introduced by R. Aumann in [?].

5.1 MIXED STRATEGIES, SIGNALS, AND CORRELATED EQUILIBRIUM

As in the previous chapters, we consider static games first.

5.1.1 Correlated Equilibria

Consider N players and let us denote their set by [N] = {1,..., N}. Let A’ be the set of
actions available to player i € [N], A’ be a o-field on A® and let A = A x --- x AN be
the set of strategy profiles and A = A' ® --- ® A" the product o—field on A. Next we
consider a cost function for each player J : A — RY where J = (Ji)i=1’,,,,N.

We denote by G = ([IV], A4, J) the game defined by the above quantities.

Let X% = P(A?) be the set of mixed strategies for player i. This is the set of probability
measures on the measurable space (A%, A%). If A’ is a finite set, the ¢ = A(A?) is just
a simplex. Let X = X! x --- x XNV be the set of mixed strategy profiles. If 7 € X, then
there exists w1, ..., 7 with 7 € P(A?) such that 7 = (7!,..., 7). Since they are
in one-to-one correspondence, we identify the mixed strategy profiles 7 = (7!,...,7%V)
with the product measures n®..QaN e P(A). Thus, X can be viewed as the set of
product probability measures on (A, .A) and it is a subset of the set of all the probability

distributions on (A, A), namely X' < P(A).

Remark 5.1 It is very important to emphasize that for every mixed strategy profile m € X,
the individual strategies of the N players are sampled independently according to their
marginal distributions (7%);—1 ... N. However, for any m € P(A), one can imagine a (ran-
dom) strategy profile (o, ..., oY) ~ m for which the individual actions (a);en are not
sampled independently according to the marginal distribution ©° = § 4 (o da™%) on
(A% AY), but instead, sampled jointly according to the joint distribution . This last point
is at the root of the notion of correlated equilibrium which we study next.

To emphasize the specific nature of a correlated equilibrium, we introduce the notion in
parallel with the notion of mixed equilibrium in order to highlight the differences between
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the two notions. For this reason, we recall the definition and the notations used when we
first introduced mixed equilibria. As always when we use mixed strategies, we actually
work with the extended game introduced early. In order to avoid using too many tildes ~
complicating the notation, we redefine the components of the extended game from scratch.
We extend the cost function J form A to the set X — P(A) in a natural way. More precisely,
we consider J : X — R¥ such that for every i € [N],

Ji(m) = JJi(a17 aMrt(dat) . N (daY). (5.1)

In other words, J*() is the integral of the function o — J*(cx) with respect to the product
measure 7! ®...®7V. If A® are finite for all i € [IV], then the above extension of the cost
function reads

N
Ji(m) = Z Ji(al,...7aN)H7rj(aj).
j=1

a=(al,...,aN)eA

Definition 5.2 An element 7 € X° is called a mixed strategy for player i € [N]. An
element m € X' is called a mixed strategy profile. We define the extended game with mixed
strategy by G = ([N], 2, J).

A mixed strategy profile T* = (wbV*,... 7wN*) is said to be a mixed Nash equilibrium
for the original game G = ([N], A, J) if it is a Nash equilibrium for the extended game
G = ([N],%,J).

We now introduce the important concept of correlated equilibrium.

Definition 5.3 A probability measure w € P(A) (which is not necessarily a product dis-
tribution) is said to be a correlated equilibrium (cNE) if for w'-a.e. of € A' and 7'-a.e.
a' e A%, we have

J J (o', a HYr(da™ at) < f JH &' oY r(da ab). (5.2)
A—i A—i
where 7 is the marginal distribution of T on the space (A*, A*).

In words, for a particular player, say ¢ € [N], and for a given signal/recommendation,
say o € A%, then conditional on this knowledge, the signal o is the best response of player
i against the other players playing according to the joint probability distribution 7 € P(A).

Remark 5.4 If the sets A’ are finite for all i € [N], then for every function o on A and
at e A
)

Lﬂ- ple)m(de|a") = 2 plal,...,aM)Teo )

(al,...,ai=1 i+l N) Za*’i W(a)
So the above condition for (cNE) rewrites

Z. J(@' o (o, o) < Z J(@' a Hr(ad, ™).
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Given the above definition, the following proposition is straightforward. We state it
without proof because of its importance.

Proposition 5.5

1. If(wt,...,7N) is a mixed NE, then = 7' ® - - - @ 7'V is a correlated equilibrium.

2. If (mi)k=1.... x € (P(A))E are correlated equilibria and if (px.)k=1... x € [0,1]% is
such that ZkK=1 pr = 1, then m = Zk PLTE IS also a correlated equilibrium. In other
words the set (cNE) of correlated Nash equilibria is a convex set.

Remark 5.6 Notice that it is NOT true in general that a convex combination of mixed Nash
equilibria is a mixed Nash equilibrium.

Remark 5.7 While the above sobering remark says that the set of values of the mixed Nash
equilibria may not be convex, the structure of its convex hull is not too complex. Indeed,
we can extend the definition of the cost function to accommodate general correlated
random strategies. Using the same notation:

Ji(r) = JJi(al,...,aN)w(dal,...,daN). (5.3)

for m € P(A) defining in this way a cost function J : P(A) — RN, The set of values of the
mixed Nash equilibria is given by:

Jmng = {J(n), 7 € ¥ mixed Nash equilibrium} = R" .

We denote by coJ,,Ng its convex hull. By Carathéodory theorem, for any J € coJy,NE,

there exists at most N + 1 mixed Nash equilibria 7, ..., 7n+1 and N + 1 non-negative
real values p1,...,pn+1 € [0, 1] with Zgjll pr = 1 such that
N+1
J = Z ka(Fk).
k=1

We shall use this fact later on in these lectures.

The numerical computation of correlated equilibria is a difficult challenge, even when the
action spaces A® are finite. For practical algorithms for the computation of correlated equi-
libria in polynomial time, the reader is referred to [?].

5.1.2 Signals

All the random quantities used in this section are assumed to be defined on a probability
space ({2, F,P). The idea behind the discussion of this section is to sample from the state
of the world w € (2, and then provide a signal or a recommendation to each player based
on that sample. Let £ be an A-valued random variable on (2, F,P), thatis £ : 2 — A'is
(F, A)-measurable. Since A = A x ... x AN, we can write £ = (¢1,...,&") in which
case &' € A’ is interpreted as the signal or recommendation for player 1.

Letm = L(§) = Po¢™! € P(A), ie. m(B) = P(¢ € B) for all B € A be the
push forward of the probability P, in other words, the law of the random quantity &. We
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notice that 7 is not necessarily a product measure, in other words, the N signals are not
necessarily independent since they can depend upon each other.

In general, for every i € [IN], we denote by 7' = L(¢%) € P(A*) the marginal law
of £* on (A, A"), namely the push forward of PP by &%, and by 7(-|¢* = af) € P(A™)
the conditional law of £~% on (A%, A~%) given that £ = a'. So for any measurable and
bounded function f on A we have:

| r@m(da) =B ) = BIEIAE, ... )€
~ [ ([ st e ntdale = o))
At A—i

Accordingly, saying that the law of ¢ is a correlated Nash Equilibrium (cNE) is equivalent
to saying that Vi € [N],Va&" € A?,

E[J(E ¢ <E[J' (@', ¢)E]. P—a.s,
or in other words, for every &' € A°,

E[Jz(az7§72)|§z:az] <E[J7‘(&Z,£7l)|£7‘:al]7 7ri—a.e OziGAi.

Definition 5.8 (Information structure) An information structure is a tuple

(92, (Fiernys (Pierny)s

where (2 is the state of the world, and for each i € [N], F' is the set of events known to
player i, and P is a probability measure on the measurable space (£2, F").

The measure IP* is interpreted as the probability measure of player i. For example, given
(2, F,P) and a signal ¢ = (¢1,...,¢N), we can choose F o Fi! = o{¢'} = {{¢' €
B}; B € A%} for the set of events which depend only upon the signal £ of player 4, and
P = [P, 7: the restriction of the probability measure P to this class of events.

5.1.3 Examples

Example 1.

We first consider the classical game model known under the name of Battle of the Sexes. A
couple, wife and husband, have to choose between going to the opera or a soccer game. The
rewards for the different choices are given in Table Uncharacteristically given how we
proceeded so far, we use rewards instead of costs, so in this example, the players (husband
and wife) try to maximize their rewards.

e In this game, there are two Nash equilibria in pure strategies: o' = a? = Opera, and
al = a? = Soccer.

e If one uses mixed strategies given by probability distributions as in Table[5.2] one can
see that there is also one (non-pure) Nash equilibrium in mixed strategies: wife chooses

opera with probability p = 4/5 and husband chooses opera with probability ¢ = 1/5.
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Husband
Wife ‘Opera Soccer
Opera (4,1) ] (0,0)
Soccer (0,0) | (1,4)

Table 5.1: Battle of sexes: reward table

Husband
Wife Opera Soccer
Opera ‘ Pq ‘ p(1—q)
Soccer (1 -p)g|(1—=p)(1—4q)

Table 5.2: Battle of sexes: typical probability distribution m € X giving a mixed strategy profile.
Here Ttwise(Opera) = p and Thusband(Opera) = gq.

e However, one can see by inspection that there are many correlated equilibria, case in
point:
Top,op = 0.5= Tsoc,socs Top,soc = Tsoc,op = 0,

is one of them.

Example 2.

We now consider the classical game model known as the traffic light dilemma. The costs
to the two players (driver of car 1 and driver of car 2) are given in Table [5.3] below. While
the possible actions are stated as Stop and Go in this table, we shall abbreviate them to .S
and G in the discussion and the computations below. Note that in this example, both drivers
want to minimize their cost.

Car 2
Car 1 Stop ‘ Go
Stop ( , ) (0,-1)
Go 100 100

Table 5.3: Traffic light game: costs.

e Pure Nash equilibria:
(a*,a?) = (G, 9) is a pure Nash equilibrium. Indeed, J'(G,S) = -1 < 0 =
JY(S,S), and J?(G,S) = 0 < 100 = J?(G, G).
— Similarly, (o', a?) = (S, Q) is also a Nash equilibrium in pure strategies.
e Mixed Nash equilibria: to compute them all, let us denote by 7 = (7%, 72) a generic
strategy profile in mixed strategies, and let p = 7*(S) and ¢ = 7%(S) so that 1 — p =
71(G),and 1 — ¢ = 7!(G). The cost to player 1 is



90

5 Signals and Correlated Equilibria

JH(m) = JHS, $)mH(9)72(S) + JH(S, G)7 (S)7*(G)

+ JYG, 9)7 (&) (S) + JHG, G (G)*(G)
—q(1=p) +100(1 = p)(1 —q)
(1 - p)(100 — 101q)

and similarly the cost for the second player is
J2(m) = (1 — ¢)(100 — 101p).

We first compute the best response 7'* of the first player to the mixed strategy 72 of
the second player. We identify the search for 7'* to the search for a probability p* and
we use the fact that 72 is given by the probability ¢:

— if ¢ < 100/101, J () is minimum when p*(q) = 1;

- if ¢ = 100/101, p*(q) can be anything;

— if ¢ > 100/101, J* () is minimum when p*(q) = 0;

Similarly, we determine the best response ¢* of the second player when the first player

acts with probability p:

— if p < 100/101, then ¢*(p) = 1;

— if p = 100/101, then ¢*(p) can be anything;

- if p > 100/101, then ¢*(p) = 0.

By definition the equilibria are the mixed strategies 7 given by couples (p, ¢) € [0, 1]?

such that p*(q) = p and ¢*(p) = ¢. We find

- (p,q) = (0,1), which is a pure Nash equilibrium, hence a mixed Nash equilibrium
as well;

- (p,q) = (1,0) which is a pure Nash equilibrium, hence a mixed Nash equilibrium
as well;

- (p,q) = (100/101,100/101): indeed if p = 100/101, then ¢*(p) can a priori be
anything. But due to the fixed point condition, we have necessarily ¢ = ¢*(p) =
100/101. Otherwise p = p*(q) = p*(¢*(p)) € {1, 0}, contradiction. This proves
that there is a unique Nash equilibrium in non-pure mixed strategies.

To complete the analysis of these equilibria, we compute the social cost:

J(m) = Z (J'(a,b) + J*(a, b))
(a,b)e{S,G}2

For the Nash equilibria in pure strategies, we find J = —1 in both cases. However, for
the Nash equilibrium in mixed strategies we find:

100 100 200

=102 " 1012 T 1012

= 0.

So the latter is worse than the NE in pure strategies.

Correlated equilibria: We now turn our attention to correlated equilibria. Such an
equilibrium, if it exists, is given by a strategy profile which is a probability distribution
7 over {S,G}? which is not necessarily the product of two probability distributions
over {5, G}. We shall use the fact that for any such 7, we have 7 ¢ = 1 — mg,5 —
ms,G — Ta,c- Recall that the definition of a correlated equilibrium says that for player
i € {1,2}, and for every o’ € {S,G} and &' € {S, G},
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JJi(ai,a_i)w(da_i|ai) < f Ji(ah a~)e(da— o).

In the current example, we have only two players and two actions per player. The in-
equality holds automatically when &° = o € {S, G}, so we have only two inequalities
to check for each player.

We first consider the case of player ¢ = 1.

— Consider o = S, &' = G. We want to have

J(S, S)ms,s + JHS, G rs.c < JHG, S)mss + JH G, G)ms.q
which can be rewritten as
0< —mg,9 +1007s,G.
Using the fact that 7 is a probability distribution, the above inequality rewrites
10l7g ¢ + 7a,5 + mg,c = 1. 5.4
— Consider now o' = G, &' = 5. We want to have
JYG,S)rg.s + JHG, Q)ra.q < JHS,S)ra.s + JH(S,G)na.c

which rewrites
—7mg,s +100mg ¢ <0,

or equivalently
1007g,q < 7a,s. 5.5)

Likewise, for player i = 2,
— Consider o? = S, &% = G. We want to check that

Jz(S, S)ﬂ's,s + JQ(G,S)TFG,S < Jz(S, G)ﬂ'&s + J2(G,G)7TG7S

which rewrites
0< —7gs,s + 1007‘[‘(;)5.

Using the fact that 7 is a probability distribution, the above inequality rewrites
1017 s + s.¢ + mg,q = 1. 5.6)
— Ifnowa? = G and 4% = S, we want
J2(S, G s.q + JHG, Q) ra.c < JX(S,S)ns.c + J2 (G, S)nc ¢

which rewrites
—7s,G + 1007TG,G <0,

or equivalently
1007, < 7s,c- 6.7
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So a probability distribution 7 on {S,G}? is a correlated equilibrium if it satisfies the

above four inequalities (3.4), (3.3), (3.6), (5.7). As expected, one easily checks that the
mixed Nash equilibrium found earlier satisfies the 4 inequalities. Indeed,

for (p,q) = (1,0) we have 7g s = mg,¢ = Tg,s = 0and mg ¢ = 1.
for (p,q) = (0,1) we have 75 ¢ = mg,¢ = 75, = 0 and 7,5 = 1.

e for (p,q) = (100/101,100/101), we have 755 = 9%, 756 = mg5 = £2% and
TG, = Tor-

To limit the search for correlated equilibria we restrict ourselves to symmetric equi-
libria for which 7q g = mg . With this extra demand, a joint probability distribution
7 € P({S,G}?) is a symmetric correlated equilibrium if it satisfies the following two in-
equalities:

1007g,¢ < 7q,s, 1027g.s + 7q,q = 1. 5.8)

If we compute the social cost associated to such a joint (symmetric) probability distribution
7 € P({S, G}?), we see that the social cost which should be of the form

J = —ms.q¢—mag,s + 200mg,q,

becomes
J = 2(_7TG,S + 10077‘(;}@),

and if we want to look for symmetric correlated equilibria with small social costs, we see
that ms ¢ = 7g.¢ = 1/2and 7g ¢ = mg,s = 0is a symmetric correlated equilibrium since
it satisfies the constraints given by the inequalities (5.8)) and its social cost is J = —1.

So while the non-pure equilibrium in mixed strategy had a worse social cost than the
Nash equilibria in pure strategies, for the particular cost functions given in Table[5.3] sym-
metric correlated equilibria can achieve the same social cost than the equilibria in pure
strategies, but they cannot do better.

5.1.4 Coarse Equilibria and Regret

There is another popular notion of equilibrium which is even weaker than the notion of
correlated equilibrium. It is called coarse correlated equilibrium. = € P(A) is such an
equilibrium if for all i € [N], for all &' € A°

JJi(a)w(da) < JJi(di, o Hr(de).

Intuitively, the notion of the best response is understood in an average sense for this notion
of equilibrium.
Conveniently associated to this notion of equilibrium is the notion of regret.

Definition 5.9 For every o € A, for every i € [N], and for any measurable function
@' AY — A%, we define the regret of player i with respect to (ct, p*) by

Ri(o, ") = J'(¢' ("), a™") = J' ().

The function ' is called a strategy modification.
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The condition for a coarse correlated equilibrium (ccNE) can be written as follows: for
all i € [N], for all constant strategy modification ¢', i.e. ¢*(-) = &* with some &' € A’
we have

JRi(a, o) m(da) = 0.

Proposition 5.10 A joint probability distribution m € P(A) is a coarse correlated equilib-
rium if and only if for every i € [ N] and for every strategy modification ',

JRi(a, ©")m(da) = 0.

Proof: One way to think about this is to view m = £(¢ Y ) as a set of strategy modification.
Specifically, the strategy modification ¢’ changes 7 to £(¢?(£%),£7%) e P(A). o

Later on in these lectures, we move on to multiple stages and dynamic games. For a
quick summary capturing many of the results seen so far for one stage game, we have

NEcmNE ccNE cceNE

and while we do not always have existence of NEs, generically, we have existence of mixed
NEs (and hence cNE and ccNE).

5.2 CORRELATED EQUILIBRIA FOR GRAPHON GAMES

Let w : [0,1] x [0,1] — [0,1] be a graphon kernel and A* : L?([0,1];R*) —
L?([0,1]; RF) the corresponding graphon operator

4% f](x) = f F(w)w(z, y)dy.

Recall that A% is a compact operator on L?([0,1];R¥). Let J : R* x R* 5 (a,2) —
J(a, z) € R be the cost function of the game and recall that a Nash equilibrium is a strategy
profile « : [0, 1] — R* such that for almost every z € [0, 1] and o/ € R,

J(e(2), 2(x|a)) < J (o, 2 (] @),

where z(z|a) = [A%a](x) = S[o,1] w(z, y)a(y)dy. Intuitively, J(«, z) should be under-
stood as the cost to any player taking action « when the graphon aggregate of the other
players’ actions is z. One more time, we stress that J is defined everywhere but the re-
quirement for the Nash equilibrium is only almost everywhere.

In order to consider correlated equilibria, we need first to introduce the notion of mixed
strategy in the context of graphon games. Recall that for each player z, the set of admissible
actions is A%, a Borel subset of a closed convex set Ay — R¥. Recall that we use the
notation I = [0, 1] when we want to emphasize that [0,1] is the set of players in the
graphon game.



94

5 Signals and Correlated Equilibria

Definition 5.11 A mixed strategy for player x € I, denoted by ©°, is a probability measure
on R¥ concentrated on A*, namely * € P(R¥) such that 7% (A*) = 1.

A mixed strategy profile, denoted by (w%) ey, is a collection of mixed strategies for
players indexed by I = [0,1] such that the mapping I 5 x — ©* € P(RF) is measurable.

The notion of measurability of z — 7% can be defined in various ways:

for all B € B(R¥), the map x — 7 (B) is measurable;
forall f : R* — R continuous with compact support, the function z — §, f(a)7®(dev)
is measurable.

Classical monotone class arguments from measure theory can be used to prove that these
two statements are equivalent.

Recall that in the case of an N-player game, say G = ([N],A = A x --- x AN J =
(J i)ie[ ~1)» we defined the notion of Nash equilibrium in mixed strategies as a Nash equilib-
rium for the corresponding extended game G.In the present context, the set of players [V ]
should be replaced by I = [0, 1], and the set A, when viewed as a product space, should
be replaced by the continuum product A = [ [, _, A”. Recall that the space of admissible
strategy profiles was defined as a smaller space, namely the subset A of this product space A
comprising the (equivalent classes of) measurable and square integrable functions o from
I into R¥ such that a(z) € A” for almost every z € I. The natural extension A of the space
A of admissible strategy profiles should be defined from the product A= [1,e; P(A*) as
the subset of the families (7%) e € A which are measurable in z in any of the senses given
above.

Remark 5.12 [. To generalize the notion of mixed Nash equilibrium introduced for N -
player games to the context of graphon games, it is natural to consider the product
measure

Py = Q)" (da”) on the product space A = H A”.
zel zel

2. Recall that for N players, we found it convenient to approach the mixed strategies as
laws of random variables (£");e[n] such that L(£') = 7 and which can be viewed
as recommendations. The difference between Nash equilibria in mixed strategies and
correlated equilibria could then be read off the independence of the £, or their lack
thereof. Here we would like to use the same idea with a continuum of random variables
(&) ze1- Obviously, we will have to work with a Fubini extension to define these objects
rigorously if and when we want the £ to be independent and depend measurably in
zel

3. As an aside, let us mention an analogy with stochastic optimal control in continuous
time. Let us assume that for t € [0, 1],

dXt = O[tdt + th

where X, is the state of the system at time t, o is the control exerted by the controller,
and the goal is to minimize the cost functional

J(a) =1E[L1;|at|2dt+ ]
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We seek to minimize J over some set A of admissible controls which consists of stochas-
tic processes o : [0, 1] x §2 — RF satisfying some extra conditions. Since this optimiza-
tion problem may not have a solution, or since conditions for existence of an optimal
control may be hard to come by, the notion of relaxed control has been introduced
to alleviate some of these difficulties. Relaxed controls are measure-valued stochastic
processes of the form 7 : [0,1] x 2 — P(R*) with 7t(w) € P(R¥) for t € [0,1]
and they bear strong relationships to the mixed controls we want to introduce to solve
graphon games. Indeed, if we forget the stochastic aspect (and remove (2 from the set-
up), these relaxed controls can be viewed as probability measures € P([0,1] x R¥)
for which the first marginal is the Lebesgue measure. In other words, if we use their
disintegration into conditional probabilities with respect to their first marginals,

n(dt, da) = 7'(da)dt,

f F(t, a)n(dt, da) =£ dt ( f f(t,a)wt(da)>,

for every bounded measurable function f. Clearly, the kernel [0,1] 5 t — 7t look
exactly like the mixed strategy profiles we want to analyze in the case of graphon games
if we swap the time variable t for the player index x.

or equivalently,

Back to our graphon games. Using the same type of cost function (v, 2) — J(a, 2) as
before, we would like to define the cost to player x € [ if all the players use the mixed
strategy profile 7 = (7%),er, via the value J* (7) of a function J* defined for each mixed
strategy profile 7 as an extension of the original cost function by the formula:

J* () = JJJJ(OALw(x,y)aydy>7r””(da) [ ] = (dav)

y#o
= ff J(a, 2)7" (da) 7" (dz)

if we denote by 7>* the push forward of the measure Py = (X) e[0,1] 7*(da®) by the map

(a¥)yer — §; w(z,y)a¥dy. This push forward measure has a simple expression when PPy
is a product measure, or to be more rigorous, when the (a¥),cr are essentially pairwise
independent. Indeed, in this case, the exact law of large numbers applied for each fixed
x € I to the essentially pairwise independent random variables X¥(w) = w(x,y)w(y)
says that for Py-almpst surely in w,

| xv@iay = | o1y

or in other words

| vty = [ wen(| amdo))ay = | o] wiwnmdad)
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which is not random, identifying the push forward measure as the Dirac point mass at the
mean of the measure

7% (da) = J w(z,y)rY(da)dy € P(RF) (5.9
I

which is the aggregate (weigted by the graphon weights w(z, y)) of the mixed strategies

7Y (da) of all the players viewed from the point of view of player « € I, and which is in

full analogy with the definition of the pure aggregate z(z|c).

Definition 5.13 The mixed strategy profile m = (7%) ey is said to be a mixed Nash Equi-
librium (mNE) for the graphon game with interaction graphon w if for almost every x € I
and for all 0 € P(R¥) such that 0( A®) = 1 we have:

J(m) < fJ(oz, 2)0(da) 7 (dz).

where T is defined by (5.9).

Given a mixed strategy profile 7 = (7%),es, Proposition m says that there exists a
white noise (£%),cs of essentially pairwise independent Ay-valued random variables satis-
fying £(£%) = o for all z € I. Note that the above definition of the cost J* () can be
rewritten as:

7w = 2[1(e. | wienera)]

and m = (7%).es is a Nash equilibrium in mixed strategies if for almost every € I and
for any random variable 6 with values in A* we have:
Jo(m) < E[J (917J w(x, y)éydy)].

I

Now, take any measurable Ag-valued process (£%).cr (not necessarily of essentially
pairwise independent random variables) on a probability space ({2, F, P). By Kolmogorov’s
theorem we know that, up to the measurability requirement which is crucial for us for the
formulas below to make sense, such a process could be defined through a probability mea-
sure IP on the product space (2, F) = ((R¥)!(By)!) such that the marginal distribution
at z coincides with that of £”. In any case, we set 7° = P o (£%)7! for these marginal
distributions. Denoting by E the expectation under this probability P, we have

Ji ()~ E [J (5””, fol w(m)&ydy)] |

and if we define the process z = (z(z[€))zef0,1] by

2(zfé) = f wz, y)evdy

the latter can be interpreted as the graphon weighted aggregate signal and it is natural to
introduce the following definition. Note that the fact that for each w € {2 fixed the function
y — &Y (w) is measurable is crucial for the above integrals to make sense.
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Definition 5.14 For a given mixed strategy profile m = (7%)e1, we say that a probability
distribution P satisfies m* = P o (£%)~! for every x € I is a correlated equilibrium if

Jo(m) <E [J (C,Jl w(%y)ﬁydy)] ;

0

for almost every x € I and for all A*-valued random variable (.

With this definition of correlated equilibrium, the notion of mixed Nash equilibrium (mNE)
can be reformulated in the following way: © = (7%) ¢[0,1] is @ mixed Nash equilibrium if
and only if the product measure Py is a correlated equilibrium in the sense of the above
definition.

5.3 LARGE BAYESIAN GAMES AND COURNOT COMPETITION

We first describe mathematically how under some very specific conditions, one can take
the limit when the number N of players tends to co and obtain limiting objects of the
anonymous game type.

5.3.1 Anonymous Games as Limits

In an N-player game, we denote by © the set of possible types of player i € [N], and
the set of type profiles is denoted by ©@ = O x --- x OV . We also denote the set of pure
strategy profiles by A = A® x - .- x AN . Here, we consider game models which have some
kind of symmetry among the players. Previously, the cost to to player i € [ N] depended
on the type profile and the strategy profile (8, ) of all players and we would write it as
J4(8, ). Now we consider costs which take the form:

% i i 1 S
J (G,a) = JO (9 , ,m Z (S(QLO,I))

J=1,5#i
for some common function Jy. In particular,
Jl(ez, Ozi7 (Qj, Oéj)j;éi) = J7(0’, ai, (Oa(j), aa(j))j;ﬁi)

Furthermore, we assume that all the type sets 7 for j € [N] are identical, and we denote
their common value by ©. Similarly, we assume that all the feasible control sets A7 for
Jj € [INV] are the same and we denote their common value by Ag. So the function Jy used
above to define the individual casts is of the form:

J()Z@()XA()XP(Q()XA())—)R.

The following proposition (borrowed from [10]) is a rigorous justification of the in-
tuitive fact that the symmetry among the players implies that for large games, the cost
function Jj can indeed be derived from a function of measures.
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Lemma 5.15 Let E be a compact metric space, and for each integer N, let u™ : EV — R
be symmetric, i.e.,

UN((xi)ie[N]) = UN((ﬂfa(i))ie[N])
for any permutation o : [N] — [N] of the indices {1, ..., N}. Furthermore we assume:

1. uniform boundedness:

sup  sup ¥ ((o)iepn)| < oo
NZ=1(z;);en€EN
2. uniform Lipschitz continuity: there exists a constant ¢ > 0 such that for all N > 1 and
forall X)Y € EN,
[ (X) = uN (V)| < ep (X, 1Y)

-N _ 1 N . .. . .
where i = ijl dx, is the empirical measure, and p is a metric on P(E) for
weak convergence.

Then there is a subsequence (uN*)x=1 and a Lipschitz continuous map U : P(E) — R
such that

li Ne(xX) —U ()| = o.
G, sup [ (X) = Uiy

Intuitively, the above result says that a symmetric function of a large number of vari-
ables can be approximated by a function of the empirical distribution when the number of
variables is large enough.

The relevance of this result to our current concerns is to allow us to apply it to the set
EN=1 = (©y x Ag)N = for ulN=1(-) = J¥(#%,a’, ) to be able to say

ifgi i o(pd g .
JUO ot (07, a) i) & Jo (9 o 215(9_7',,}.7‘)) .
J#i
In fact, we do not really need to explicitly assume that u’¥ is symmetric because what
is needed in the proof can be inferred from the uniform Lipschitz continuity condition.

Proof: 'We could repeat mutatis mutandis the proof given in [11, Lemma 1.2]. We only outline the
main steps. For each n > 1, we define the function U™ : P(E) — R by

U'(p) = Jof [u"(X) +cp(x,w)],  peP(E)

We can split the proof into 4 steps:

e First we show that U™ is uniformly bounded.
e Next we show that U™ extends u™ in the sense that forany Y € E™ and n > 1,

u'(Y) = U (my).
e Then we argue that U™ is uniformly c—Lipschitz on P(E):
U™ (1) =U" )] < cp(p, v)
forall u, v € P(E).
e Finally, using Arzela-Ascoli’s theorem and the compactness of the metric space P(E), we see
that there exists a subsequence (nx)x>1 for which U™* converges uniformly toward a limit U so

that

limsup sup |u™*(X)—U(Ey¥)| < lim sup U™ (u)—U(u)] =0
k—o XeE™k k=00 P (E)

This concludes the proof. ©
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5.3.2 Large Bayesian Games

Recall that the basic building blocks of a Bayesian game are:

An action space Ag.

The set [N] = {1,..., N} of players.

For each i € [N], the set A = Ay of feasible actions for player i. We assume that
Ap = RF for some integer & > 1 and that A is closed.

O = O' x --- x O be the space of type profiles, where @' — .

The costs functions J = (J*),e[n1, for which J*(0, a) = J*(6*,...,6N ot ... ™).

We now add a symmetry assumption which will allow us to use Lemma [5.15] To be
specific, we assume that for each i € [N] and o’ € A and #° € ©' the function:

(ej’ O‘j)j?ﬁi — Jl(ev Oé)

is symmetric and satisfies the assumptions of Lemma As a result, if we want to ana-
lyze models of large games we can assume that

J'(0,a) = J*( symmetric function of (87, a7),.;,0", a%).

for some function Jy : P(Og x Ag) x Oy x Ay — R.

In this set up, a pure strategy for player 7 is a measurable function o : @ — A?, while
a mixed strategy is a function 7 : @ — P(A*). We restrict ourselves to the case when ©°
are compact subset of ©y and because of the symmetry assumption we shall also assume
that @' = @y, A" = Ap forali € [N].

5.3.3 Cournot Competition

Definition 5.16 Given a probability measure A € P(Oy) over types, we define the set C(\)
of Cournot-Nash equilibria as

C(\) = {u e POy x Ag); ITM(n) = A and

p({(0.0) € O x Avia€ A©), Jo(,0,0) = inf Jo(u,6,5)}) = 1}

where IT" denotes the first marginal, namely (B x Ag) = \(B) for all B € B().

Remark 5.17 1. In the above definition, we see that the types are revealed first, accord-
ing to the distribution )\, and then players take actions. So \ should be viewed as a
prior distribution of the types.

2. The condition u(---) = 1 means that the measure i is concentrated on the set of
type-action pairs (6, ) such that for each type 0, the action « is the best response.

3. By disintegration of the measure | (i.e. using a regular version of the conditional
probability given the first component 0), we have p(df,da) = A(dO)r?(da) where
T = (7r9)9€@0 is measurable in 0, in other words, is a probability transition kernel
form (6o, B(Oy)) to (Ao, B(Ag)).
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4. If there is a unique best response o/(0) for each type 6, 7°(da) = da(p)(da) for some
a(0) € Ay, then the mapping defined by ©g 3 0 — «(0) € Ay is a pure strategy.

For the next result we shall make the following assumptions.
Assumption 2.

Al. Ay is a compact metric space;
A2. Oy is a Polish space (complete separable metric space);
A3. The constraint correspondence A : Oy — Ag satisfies
o VO e O, A(0) is a non-empty closed subset of Ay.
e A is continuous, or equivalently,

— the graph gr(A) = {(0,a) € Oy x Ay : a € A(0)} is closed (which implies
that A is upper hemi-continuous since A is compact);

—  for every sequence (0,,),, and 0 € Og, o € A(0) with 0,, — 0, there exists a
subsequence (ny) and oy, € A(0y,) such that o, — «a ask — oo (A s
lower hemi-continuous).

Ad. Jy: P(Og x Ag) x Oy x Ay — R is continuous and bounded.

The following proposition is borrowed from [23] where the authors also study the corre-
sponding law of large numbers and the central limit theorems appropriate for these models.

Proposition 5.18 (Mas-Colell) Under assumption[2) for each A € P(Oy), the set C(\) of
Cournot-Nash equilibria is not empty.

Proof: For A € P(Op). Set
M(A) = {neP(Oo x Ao): IT' () = X, u({(8,@); a € A(6)}) = 1}.

1. Step 1. M(X) < P(Og x Ap) is closed.
Indeed, if pun, € M(N) is such that p,, = p weakly we can show that 1 € M()). By definition
of weak convergence, for all f : ©g x Ag — R continuous, § fdpn — § fdp. In particular
for f(6,a) = f(0) independent of the second variable, we have § f(0)IT" (un)(d) —

§ £(0)IT" (1) (dB). So that IT* (1) (dO) = A(d6).

2. Step 2. M()) is tight, i.e., for all € > 0, there exists a compact K. < ©g x Ag such that for all
we M(X), p(Ke) = 1 — e. We should notice that O is not necessarily compact. Since O is
a Polish space, for e > 0 there exists a compact set K. @ such that A(f(e) > 1 — e. Since
the first marginal of any p € M(X) is equal to A it is obvious that u(K.) = 1 — e if we set
K. = K, ¢ X Ao which is obviously compact.

3. Step 3. We define the correspondence @ : M(\) — M () by

o) = {pe MO [ Glub,0)ap.do) < o

0XxAg
where
G(,LL, 07 CY) =Jo (/’L? 67 a) - 5512{9) Jo (H7 07 6)

Notice that a fixed point for ¢ is a Cournot-Nash equilibrium. So our goal is to conclude the
proof using Kakutani’s fixed point theorem (see Theorem [I.29] in Chapter [T), so we proceed
to check the assumptions of this theorem. G is bounded because Jy is bounded. Since Jy is
continuous, the assumptions of Berge’s minimum theorem recalled in Chapter [I] as Theorem
[L30 are satisfied and we learn that G is bounded and continuous.
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e Since the correspondence A is continuous, it is measurable with respect to the Borel
o—algebras on @ and Ap, so that A is also weakly measurable (since both @ and Ag
are metrizable, see [1, Lemma 18.2]). Moreover, since Jy is continuous, it is a Carathéodory
function and we can use Theorem[T.32]recalled in the appendix of Chapter[T]to conclude the
existence of & : M(X) x Oy — Ag such that

Jo(t,0,6(p,0)) = Béﬁife) Jo(u, 6, 8).

So if we define the measure [ by
f(d0, dor) = A(d0)ds(u,0) (dev)

we immediately see that i € @(u) proving that @(u) is not empty.
e  P(pu) is convex, because M () is convex.
e  We now check that the graph of @, namely

gr(®) = {(n, 1) e M(A) x M(A) : e P(u)},

is closed. Remember that we only assume that @ is a Polish space. Let us assume that
(fbny fin)n=1 is a sequence with i, € @(un) for each n > 1, and such that there exists
w, i € M(X) such that (pn, fin) = (i, ft) weakly in P(Og x Ag). We want to show that
(, i) € gr(®P) to conclude that gr(P) is closed.

To do so, let us pick € > 0. Because a convergent sequence of measures is tight, there exists
a compact set K. € ©g x Ag such that for every n > 1

€
4Gl
Since G is continuous, it is uniformly continuous on K x K. where K is a compact subset

of P(©p x Ap) containing {1n,n = 1} U {u} < K. Then, there exists an n. such that for
all n > n. and for all (0, o) € Ko,

fin (K¢) <

‘G(/,Ln79,a) - G(,LL,97C¥)| <

IR

So, for n > ne,

f G (fin 8, 0) — G4 8, )| fin (B, der)

- (j +J )|G(M”’9’O‘)_G(Mﬁ:a)mn(d@,da)
¢ k.

- c €
< 200 (KOGl + 5
< e

Thus, for n large enough we have:
| Gtu.0.0)2(a0, de)
_ fc(u, 0, )i — fin](d6, dar) + J[G(u, 6, 0) = Gljin, 0, 0)]jin (d6, dar)

+ f G(/"Ln? 97 a)ﬂ"(dev dOf)

<e+e+0
< 2¢
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because the first integral tends to 0 because G is bounded and continuous and p,, conver-
gences weakly towards p, the second integral is smaller than € for all n > n., and the third
integral is not greater than zeros because (u, fin) € gr(®). Since € > 0 was arbitraty, this
proves that (i, i) € gr(®). Therefore, we can apply Kakutani’s fixed point theorem and
conclude the existence of a Cournot-Nash equilibrium.

This concludes the proof. ©
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Multi-Stage & Dynamic Games

6.1 MULTI-STAGE GAMES

A multi-stage game consists of the following components:

e A sequence (0,..., K) which represents the stages of the game;
e N players who play repeatedly and take action simultaneously at each stage of the
game;

At each stage, each player is cognizant of the actions of all the N players in all the previous
stages. For each stage k € {0, ..., K}, the action profile at this stage is denoted by:

ar = (ap,...,al)
where . is the action chosen by player i at stage k. The available information before this
action is taken at stage k is called the history. It is defined as:

hk = (a07 . '7ak71)7

for k > 1,and h° = ¢ by convention. At stage k, the feasible set of actions for player i is
denoted by A?(h*). It depends on the information contained in the history prior to stage k.
For example, the resources that have been used in the past can affect the current actions of
players. So, at stage &, the action chosen by player ¢ can be viewed as a function of history
h*;

We include “no action” as part of A*(h*) for every i = 1,..., N and for every k =
0,..., K. This will gave flexibility to the model, allowing players to be inactive at certain
stages. This will be the case when player ¢ choses “no action”.

Here are some examples for multi-stage games:

1. K = 0,1.e. with one single stage, so no repetition, the Cournot competition discussed
in Subsection [I.2.2]is an example.

2. K =1, i.e. with two stages, our model of repeated games can capture the so-called
Stackelberg game models if we choose N = 2 to consider only two players. One
player is called the leader, and the other is called the follower. Then
e atstage k = 0, the leader chooses an action a € A'**" (). The follower is

inactive, namely Afelower (gx) = {“noaction”}.
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e atstage k = 1, the leader is inactive which we force by setting Al°@@er(pl) =
{“noaction”}, and the follower chooses an action afolower ¢ Afollower(pl
where h! = ((ag, “noaction™)).

3. K = 2, i.e. with two stages, our formalism can be used to include entry-deterrence
games between two players, an incombent and an entrant.

e at stage k = 0, the incumbent raises and amount cg of money, and the entrant is
forced to be inactive;

e at stage k = 1, the incumbent is inactive (can only choose “no action”), while the
entrant choses between “enter” or “do not enter”’;

e at stage k = 2, if the entrant chose to enter at stage & = 1, the game is played
between the incumbent and the entrant as a Cournot competition.

Definition 6.1 A pure strategy for playeri € {1,..., N}, is a sequence &' = (&4 )k—o,... K
of actions, one for each stage. A pure strategy profile, denoted by &, is a collection of pure
strategies, one for each player:

& = (6")i=1,..v = (Q})i=1,....N, k=0,... K-

It is said to be an admissible pure strategy profile if & € A*(h*) forallk =0, ..., K and
i=1,..., N

The set of histories h* is denoted by H (k). So H(K + 1) represents the set of all strategy
profiles throughout the game, namely the set of all the actions taken by all the players
throughout the game.We complete the definition of the repeated game by defining the costs
to the players. At the last stage K = K, we collect all the histories and we decide of the
rewards or costs to the individual players.

Definition 6.2 To each playeri € {1,..., N}, we assign a cost function J* : H(K +1) —
R.

We shall often denote by [N] the set {1,--- , N} of the N players. Also, the cost func-
tion J* is often assumed to be distributed and addictive, i.e. of the form

THRSY = enfi (o).

k=0

,,,,, x are most often used as discount factors. For example, when
they are of the form ¢, = cx 0" for some cx € Rand § € [0, 1], J*(h¥) can represent the
present value of the aggregate of the one-stage costs f?(af) accumulated over the length
of the game. They can also be used to model the patience or the impatience of the players.
For infinitely repeated games, i.e. when K = 00, we often assume that the functions f* are
uniformly bounded and § < 1 to make sure that the (infinite) summation defining J?(h%)
makes sense.

Definition 6.3 A pure strategy profile & is said to be a pure strategy Nash equilibrium if for
everyplayeri € {1,..., N} and every strategy (i.e. sequence of actions o* = (a, ..., %)
for player i), such that the strategy profile (o', a™*) is still admissible, we have:
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JH (&) < J((of, &)

where as we did up to now, we use the notation (o', & ") = (i, &, ko, k-1 With
fie1 il

(at, d,;i) = (4f,...,a; Yok, &t aY) is the action profile at stage k.

Remark 6.4 Notice that the admissibility of the strategy profile (o', %) may be quite
difficult to check in some cases. Indeed, having player i change his strategy &' may change
all the histories h* which may make the admissibility condition ozfc e AJ(h*) difficult to

verify.

We now introduce a concept which plays an important role in the analysis of repeated
and dynamic games. We first define the notion of sub-game.

Definition 6.5 For each stage k = 0,..., K and for each history h* € H(k), we define
the game G(h*) as the new game, depending on the history h* = (av, ..., au_1) in the
following way:

The new game has still the same N players;
The new pure strategy profiles for the game G(h*) are the

ok = (Q4)ic1, N =k kt1,. K

e The new histories h®* € H*(() are given by h** = (h* ay,...,cu_1) for £ =
koo JK+1;
e The new cost functions are the functions H* (K + 1) 3 hE-E+L s Ji(pkK+1),

We now define the notion of sub-game perfect Nash equilibrium.

Definition 6.6 A strategy profile & is said to be a sub-game perfect Nash equilibrium
if for every stage k € {0,...,K} and every history hk e H(k), the strategy profile
(&})i=1,... N, t=k,..., k1 is a Nash equilibrium for the sub game G(nk).

In words, at every stage k, whatever the history, if players play according to the strategy
profile (o?})i:l’.__, N, ¢=k,...,k—1 afterwards, then they are in a Nash equilibrium of the new
game.

Remark 6.7 We now introduce the notions of open and closed loop strategies. Let az be
the action taken by player i at stage k. For the sake of simplicity, we assume that A*(h*) =
R for every h* € H(k) and everyk =0, ..., K.

o o« = (ab);y is said to be an open loop strategy profile if there exists a function ¢" :
{0,..., K} — R such that o, = ¢'(k) for every k = 0, ... K, the functions " being
chosen before the game begins.

e = (a};)i’k is said to be a closed loop strategy profile if for each i € [N] and k €
{0, -+ | K}, there exists a function @, : H(k) — R such that

% 0

Q= @k(a()v T 7ak*1)’

We shall revisit these definitions in the case of dynamic stochastic games.
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6.1.1 The One-Stage Prisoner’s Dilemma Game

Assume that there are only two players N = 2, and that the feasible sets of actions are
Ay = Ay = {C, D} for every stage k of the game. Here C stands for cooperation and D
stands for defection.

The costs to the two players are defined in terms of four real numbers 7', R, P, S € R
which satisfy 7' < R < P < S. The costs are labeled after letters which have an intuitive
meaning, so we kept the letters used in the classical literature on game theory: 7" stands for
temptation, R for reward , P for punishment, and S for sucker.

In the one-stage game, the costs of the two players are given by the following two
functions:

Jl(al,az) =1,_¢ (Rlazzc + T1a2:D) +1,-p (Slazzc + PlazzD),
and
J2(a1,a2) = 1a2:C (R]-(xl:C —+ T]-al:D) =+ 1a2:D (SlalzC + P]-(,yl:D)-

To conform with the standard practice which gives the costs in a matrix format, we restate
the definition of the costs in table [6.4):

PI\P2[ C | D
C [(R,R)|(S,T)
D |(T,5)[(P,P)

Table 6.4: Cost functions of the one-stage game for the two players in a matrix form. The entries of
the matrix give the values of the costs (J'(-), J2(-)) representing the costs of player 1 and player
2 in different situation. The column names represent the strategies chosen by player 2 and the row
names are for player 1.

The objective of the players is to minimize their own costs. Notice that the inequalities
T < R and P < S imply that defection is a preferable strategy for both players. Still the
unique Nash equilibrium is different.

Proposition 6.8 The strategy (D, D) is a Nash equilibrium.
Proof: The proof is done by inspection.
1. If players choose the strategy (o', o?) = (D, D), then
J'(D,D)=P<S8=JYC,D), J*(D,D)=P<S8=J%D,C).

Thus, (D, D) is a Nash equilibrium.
2. If (o, 0®) = (D, C), then

JY(D,C)=T<R=J'(C,C), J*D,C)=S>P=JD,D).

Thus, (D, C) is not a Nash equilibrium.



6.1 Multi-Stage Games 109

3. If (o', &®) = (C, D), then
J'(C,D)=S>P=J"(D,D), J*C,D)=T<R=J*C,C).
Thus, (C, D) is not a Nash equilibrium.
4. If (o', a?) = (C, C), then
JYC,C)=R>T=JYD,C), J*C,C)=R>T=J*C,D).
Thus, (C, D) is not a Nash equilibrium,

which completes the proof. ©

6.1.2 Repeated Games
Let us denote the cost function in the static one-stage game by

JH(a) = Ji(a', a?), with a = (a',a?), i=1,2,

Finitely Repeated Games

The cost for a K + 1-stage game for player ¢ can be expressed by

) 1-9 - j Tt
7=0

where the constant 0 < § < 1 captures the fact that the players are impatient and want to
weigh the recent results more heavily. The constant in front of the summation sign does
not play any particular role in the search for equilibria. It is there as a normalization factor,
making sure that the sum of the discount factors is 1. The following result, known as the
one stage deviation principle is useful to identify sub-game perfect Nash equilibria.

i=1,.

Proposition 6.9 For finitely repeated games, a pure strategy profile & = (&}) k:o,.'.'fg( is
a sub-game perfect Nash equilibrium if and only if

(*) there is no player v and no stra‘tegy B = (5,2)2::10]}[( thqt agrees with o' except
for one single stage ko and such that 3" is a better response to &' tahn o' conditional on
the history h*o.

Proof: The Only if part follows directly from the definition of sub-game perfection. So we only
argue the If part. If & is not a sub-game perfect Nash equilibrium, there exists a stage k, a history h*
a player 7 and a strategy 3° which is a better response to & ¢ than o’ for the game startig at stage k
with history h* as conditioning. If we define

k= max{k’; 3%, B'(h") % a'(h")},

then assumption * implies that k > k. Now, let us consider the strategy &' defined by

{

[o)]

Ay ford < k;
Bi  forl > k.

ESSERS
Il

[o})
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Since &' agrees with 3' from stage k onward, the one stage deviation principle which we assume
implies that &° is as good a response as 3% in every subgame starting from k, so & is as good a
response as 3° in the subgame starting at stage k with history h*.

If k = k + 1, then & = &' which contradicts the hypothesis that 3° improves on &°. Now if
k > k + 1, we can construct a strategy that agrees with 3° until stage k — 2 and argues that it is as
good as 3°. Repeating the procedure over and over we end up with a contradiction which concludes
the proof. ©

Remark 6.10 Note that finitely repeated games can have multiple Nash equilibria.

Infinitely Repeated Games

When the one stage game is repeated infinitely many times, i.e. when K = oo, the cost to
player ¢ can be expressed by

T o, ... ak) = (1=108) Y, & J'(a;).
j=0

These costs can be interpreted in the following way. If we denote by 7 a geometric random
variable with parameter 1 — 4 € (0, 1],

P(r=k)=6(1-06), fork=0,1,...,

then for a sequence of strategy profiles & = (o;)k=o,1,..., the cost to player i can be
interpreted as the expectation of the cost of the one-stage game at the random stage 7.
Indeed:

E[J (ar)] = (1—6) >} 67 T (a)).
j=0

Remark 6.11 A result similar (though under some extra assumption) to the one-stage de-
viation principle stated and proved as Proposition[6.9 above can also be proven for infinite
horizon repeated games. We shall not state it here because of its more technical nature.

6.1.3 The Repeated Prisoner’s Dilemma Game

Proposition 6.12 [fthe prisoner dilemma game is repeated finitely many times, the strategy
profile (D, D), ..., (D, D)) is the unique sub-game perfect Nash equilibrium.

Proof: While we do not give a complete proof of this standard result, we highlight several important
steps.

Step 1: We first check that if we are looking for a sub-game perfect Nash equilibrium, the last
choice should necessarily be (D, D) whatever the history is.

Step 2: We complete the proof by an induction argument backward in time. The so-called one
stage deviation principle for sub-game perfect Nash equilibria (stated and proved as Proposition [6.9)
provides the induction part of the proof. It imples that when K < o0, the strategy profile & =
(di)i:LQ, k=o0,...,k—1 Where o, = (oz,lc, ai) = (D, D) forevery k = 0,1,..., K — 1is the only
sub-game perfect Nash equilibrium. ©
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Remark 6.13 The result is different when the number of stages is infinite, i.e. K = o0.
Indeed, using an appropriate version of the one-stage deviation principle it is possible to
prove that when K = o and § > % the following strategy profile is a sub-game perfect
Nash equilibrium. Each player follows the strategy described below:

1. she starts playing with action C;
2. she keeps on playing with action C' until she sees an action D of the other player;
3. she switches to play with action D and keeps on playing with action D afterwards.

So if the game has to be played infinitely many times, then cooperation may be observed
for a long period of time.

6.2 STOCHASTIC GAMES

The concept of a stochastic game can be viewed as a generalization of the one of repeated
game, as well as a generalization of the notion of Markov Decision Processes (MDP for
short) to the case of multiple controllers.

We switch from the terminology of stage to time and accordingly, we use the notation
t instead of k. We consider first the case of discrete time ¢t = 0, 1,...,7, and we focus on
three different settings:

e the finite horizon problem with 7' < o0;
e the infinite horizon problem (T = o0) with a discount factor 0 < § < 1;
e the ergodic problem (7" — ©0).

Typically, a stochastic game consists of the following components:

1. A finite number of players, say NV, and we denote by [N] = {1,..., N} the set of
players.

2. A state space which we take as a measurable space (X, X). States z € X capture
information from the history and the environment. We also want the set of feasible
actions to depend upon the current state. Also, the costs depend upon the state and the
actions of the players.

3. For every player i € [N] we denote by A?(x) the set of feasible actions for player i
when the state is * € X. We assume that A’(z) is a measurable subset of a measur-
able space (A%, A). In many applications, A’ is supposed to be a compact space for
mathematical convenience.

For every = € X, we denote by A(z) = A'(x) x ... x AN(x) be the set of strategy
profiles a = (a,...,a!Y) when the state is 2 € X. We also denote by A = A’ x
. x AN . and we equip it with the product o-field A = A x ... x AN,

4. For every i € [N], the running cost function for player ¢ in state 2 € X and for a

strategy profile « € A(x) is given by a function

ffrXxAs(za,...,a)— fi(z,a) eR

In most cases, we shall assume that f* is bounded for every i € [N].
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For finite horizon problems, we can also define a terminal cost function for player 4,
denoted by ¢° : X — R for example. And again for the sake of convenience, we shall
also assume that ¢* is bounded for every i € [N].

5. The time evolution of the state given by a process of random variables (x¢):>0, o
having a prescribed distribution, say 1o € P(X, X'), and for every ¢ > 0, x441 stands
for the new state. It has a distribution depending only on z; and the actions a; =
(a},...,alY) e A(x;) taken by all the players at time ¢. The stochastic mechanism
driving the evolution of the state is given by a transition probability function P : X x
Al x ... x A" > P(X):

P(z,a,d2’) = P(z,at,... .o, d2') .= Plde'|z,al,. .., a™]

giving the probability that the next state is in dz’ conditioned by the fact that the current
state is = and the players chose the actions cx.

We need to define precisely at each time, the kind of information each player can access
to take action. This should make clear what o depends upon, and help us decide whether
or not the process (z;);>0 is Markovian. But first, we adapt the notion of history to the
present set-up.

Definition 6.14 We define the set of histories up to time t, denoted by H?, as the collection
of state action profiles up to time t. More precisely,

H = {(Sﬂo,ao7$1,a1a~~~704t—1,$t)}
where x5 € X fors€0,1,... ,tand ag € A(xg) fors=1,...,t — 1.

We can now define the types of strategies used by the players in a stochastic game.

Definition 6.15 A pure strategy for player i € [N] is a function 7* : N x H® — A® such
that:

1. 7 is non-anticipative in the sense that ' (t, h) depends only on h' = (zg, g, 71, €1, -
Sorevery (t,h) e N x H®,
2. 7wi(t,h) € Al(xy).

A mixed strategy for player i is a function 7 : N x H® — P(A?) such that:

1. ©tis non-anticipative;
2. wi(t, h) with ht = (29, g, x1,...,0¢_1,T4) is concentrated on A*(xz;) in the sense
that
7 (t, h) (A% (zy)) = 1.

A pure stationary strategy for player i is a function ™ : X — A such that 7*(x) € A'(x)
for all x € X. Similarly, a mixed stationary strategy is a function ©* : X — P(A?) such
that for every v € X, 7' (x)[A%(x)] = 1.

The above is a pileup of notations and definitions. Next we show that they are not
unreasonable in the sense that mathematical objects satisfying all these requirements do
exist.

.- aatflal't)
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6.2.1 Set-up for Pure Strategies

Given a pure strategy profile 7 = (7;)¢>0 as defined above, where 7; = (7},... 7" ) and
7} :=m'(t,-) forevery i € [N] and ¢ > 0, we would like to know if there exists a stochastic
process (x¢);>0 such that for every ¢ > 0, we have:

Tip1 ~ Py, o)

where P : X x A! x ... x A™ — P(X) is the prescribed transition probability function.
and oy = (af,...,al) with of = 7i(h?) for every i € [N] and t > 0.

One way to do just that would be, given 7 = (m¢)i>0 and P : X x A — P(X),
to construct a probability distribution denoted by IP for example, on the product space X~
equipped with its product o-filed XY, in such a way that the coordinate process (;)¢=¢ sat-
isfies the desired properties. In particular, it should be such that for every ¢ > 0, conditioned
on (z¢, T (h?)), the marginal distribution of x;, is given by the probability distribution
P(xy, m(hY))(), namely

P[- [z, me(h')] = P(xs, m(h'))(-) € P(X).
To achieve this, we start with an initial distribution po € P(X) (for example pg = d,,).

Fort = 0, we have o ~ 10 and we denote it by Py, .
For ¢t = 1, we define a distribution P(,, .,y € P(X x X) by:

P(eo,21) (dT0, dx1) = po(dxo) P (w0, mo(20))(dz1).

This means that, for every measurable sets By, B; € X, we have

]P(wo,zl)(BO X Bl) = J

m(daco)f P(0, mol0))(dr1).
By

B,

e Fort = 2, we define the distribution P(,, »,, »,) € P(X x X x X) by:

P (2o ,01,20) (d20, dx1, d2) = po(dao) P(xo, mo(w0))(de1) P(x1, 71 (20, To(20), 1)) (d22).
e Fort = 3, we define a distribution P, 5, 2, 2.) € P(X x X x X x X) by:

P(rg,xl,zg,z;;) (d$07 d$17 dea dﬂ?3) = P(mg,xl,IQ) (dﬂ?o, dxlv dl‘g) : P(LIJQ, 7T2(h2))(d$3)

where h? = (x¢, 7o (20), 21, m1 (20, T0(20), T1), T2).
e and so on, and so on, for ¢t > 4.

We can check that the collection of probability distributions so constructed is consistent.
Hence, we can apply Kolmogorov’s extension theorem and conclude that there exists a
probability measure PP on the product space X' equipped with its product o-field X' such
that the coordinate process (2;)¢>o has the desired properties.

Remark 6.16 If the pure strategy profile  is stationary in the sense that for every t = 0 it
is such that

me(h') = mi(me) = (nf (20), .., (20)),

then 71 (x0, 7o (20), 1) = 71 (21) and wo(h?) = ma(x2), etc, and the state process (1)
is Markovian.
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6.2.2 Set-up for Mixed Strategies

We address the existence of the state process similarly. For any mixed strategy profile
7 = (m)i=0 where Ti(-) = 7(t,-) : H' — P(A?) for every i € [N] and t > 0, we
can construct a probability distribution P on the product space (X x A)N such that the
coordinate process (x4, at)¢=>0 has the properties required to describe the time evolution of
the state and the decisions of the players.

1. For ¢t = 0, we start from an initial distribution pg € P(X) such that g ~ o and we
define a distribution in P(X x A) by:

po(dxo)mo(z0)(dexo),

where 7o (z)(da) = H 7 (x)(da?) for every 2 € X. Notice the product nature of
j=1
this last measure. This is required by the fact that in models with mixed strategies, the
players randomized their actions independently of each other.
2. Fort = 1, we define a probability distribution in P(X x A x X) by:

fio(dzo)mo (o) (dexo) P(zo, o) (dz1)
And we also define a probability distribution in P(X x A x X x A) by:
to(dzo)mo(z0)(dewo) P (o, o) (dz1)m1 (2o, g, 1).
3. For t = 2, we define a probability distribution in P(X x A x X x A x X) by:

,uo(dxo)’ﬂ'()(xo)(dao)P(xo, ao)(dxl)m ("Eo, ao, 1’1)(da1)P($17 al)(dl'z)

etc, and as before, we use Kolmogorov’s extension theorem to conclude the existence
of the desired probability measure PP.

Remark 6.17 In some applications, the state space naturally appears as a product X =
X1 x ... x XV, so that the states are of the form x = (z',...,2™). In this case, the
component x* can be interpreted as the private state of player 1.

6.2.3 The Cost Functions

Whether the model requires the use of pure strategies or mixed strategies, the cost functions
are defined as follows.

Definition 6.18 e Finite horizon (T < o0): For every i € [N], the finite horizon cost
function for player i is given by a function J* depending on the initial distribution
o € P(X) and a strategy profile m = (7t,... 7N ) with 7w : N x HT — A? such that

T(uoym) =E| S filwe, o) + g (ar)
t=0

where the process (x, )= is the process whose existence was argued earlier. Here,
g' : X — R is a bounded function giving the terminal cost for player 1.



e Infinite horizon (T = o) with discount (6 € [0,1)): For every i € [N|, the infinite
horizon discounted cost function for player i associated to an initial distribution pi
and a strategy profile T = (7', ..., 7") is defined by

Ji(u()aﬂ_) [Z 5t xtaat ] .

e Ergodic: For every i € [N], the ergodic cost function for player i associated to an
initial distribution |1o and a stationary strategy profile m = (n*,...,7™V) with r*

X — A® (or a mixed stationary strategy profile ™ with m : X — P(A?) ) is defined by

T (o, m) = Timinf B lZ r xa]

for the process (¢, ot )= constructed earlier.

Remark 6.19 1. In the infinite horizon discounted case, the boundedness of the function
f? guarantees the convergence of the infinite series and the finiteness of the expectation
as well.

2. In the ergodic setting, we wish that the cost could be defined as:

but there is no guarantee that this limit exists, and even if it did, it could very well be
random. So we not only take the expectation to remove the randomness in the cost, but
we also use liminf to be sure that the cost is well defined.
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Stochastic Differential Equations

The purpose of this chapter is to introduce enough of the classical theory of Wasser-
stein space and stochastic differential equations to prepare for the analysis of anonymous
stochastic differential games with mean field interactions.

7.1 NOTATION AND FIRST DEFINITIONS

We assume that (2, F,F,P) is a stochastic basis where the filtration F = (F;)o<t<1 SUp-
ports an m-dimensional F-Brownian motion W = (W;)o<:<7 in R™. For each integer
k > 1, we denote by H¥ the collection of all R*-valued progressively measurable pro-
cesses on [0, 7] x R, and we introduce the subspaces:

T
H2k = {Z € HO*; EJ \Z,|2ds < oo}
0

and using the square root of the expectation appearing in the above definition as a norm,
the space H?* : becomes a Hilbert space, the inner product being obtained from this norm
by polarization. We shalll also use the following space

S%:= {Y e H*, E sup |Y.|? < oo}.
o<t<T

Equipped with the norm given by the square root of the expectation appearing in its defini-
tion, and by the scalar product obtained by thepolarization identity, the space H?* becomes
a separable Hilbert space. Similarly, S becomes a Banach space when equipped with the
norm given by the square root of the expectation appearing in its definition. We may also
use the notation B* for the subspace of bounded processes, namely:

BF .= {Ze HO®, | sup |Z;] < oo, P—a.s.}.

o<t<T

In the case of scalar processes, when k = 1, we skip the exponent &k from our notation. We
are interested in stochastic differential equations (SDEs) of the form

dXt = b(t, Xt)dt+0'(t,Xt)th (71)
where the coefficients b and o
(b,0): [0,T] x 2 x RY > R% x R*™

satisfy the following assumptions.
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(A1) For each z € R, the processes (b(t, z))o<t<r and (o (t, z))o<i<7 are in H>? and
H?2:4™ respectively;
(A2) 3c>0,Vte [0,T],Vwe 2,Vz, 2" € R4,

[(b,0)(t,w,z) — (b,0)(t,w,x')| < clx — 2|

As most probabilists do, we shall refrain from making the dependence upon w € {2 explicit
whenever possible.

Definition 7.1 We say that an F-progressively measurable process X = (Xi)o<t<r is @
strong solution of the SDE (I.1) if

. Sg(|b(t,Xt)| + |o(t, X3)|?)dt < oo P-almost surely,
o X, =Xo+ i b(s,Xs)ds + §; o(s, X )dW,, 0<t<T.

7.2 EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS: THE

LirSCHITZ CASE

Theorem 7.2 Let us assume that Xy € L? is independent of W and that the coefficients
b and o satisfy the assumptions (A1) and (A2) above. Then, there exists a unique solution
of equation in H2<, and for some ¢ > 0 depending only upon T and the Lipschitz
constant of b and o, this solution satisfies

E sup |X¢|* < c(1+E|Xo|?)e”. (7.2)

0<t<T

Here and in the following, we use the letter ¢ for a generic constant which can change from
line to line.

Proof: For each X € H*? the space of square integrable progressively measurable processes, we
define the process U (X) by:

t t

b(s, Xs)ds + J o(s, Xs)dWs. (7.3)
0

U(X)¢ :Xo+f

0

First we prove that U(X) € H*%, and then, since X is a solution of the SDE if and only if
U(X) = X, we prove that U is a strict contraction in the Hilbert space H*<, By definition of the
norm of H*% we have
U < (@) + (id) + (iid)
with
(i) = 3TE|Xo|* < o0,
and (44) and (¢4¢) defined below. Using the fact

[b(t, 2)|* < e(1 + [b(t, 0)[ + |=|*)

implied by our Lipschitz assumption, we have:
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2

(i) = 3E JT Jt b(s, Xs)ds| dt

0 0

T t
< 3]Ef t U |b(s,Xs)|2ds) dt
0 0

T t
< 3CEJ t U (1 + |b(s,0)|* + |XS|2)ds) dt
0

0
T
< 3¢T? (1 + b(-,0)[? +EJ |Xt|2)
0

<
if we use assumption (A1) which says that the norm of (b(¢,z))o<s<r in H*? is finite and the
assumption that X = (X¢)o<t<r i in H>?2, Finally, in order to estimate

2
dt

T

t
J (s, Xs)dWs

0

(iii) — 3E f

0

we use Doob’s maximal inequality (or its generalization in the form of the Burkholder-Davis-Gundy
(BDG) inequality which we recall below) together with the fact that

lo(t,2)* < e(1+ o (t,0)]* + |2]*)

implied by our Lipschitz assumption on o. Doing so, we have:

(#it) < 3TE sup dt
o<t<T
T
< 12T1Ef lo(s, Xs)|*ds
0

t
f o(s, X)dW,|?

0

T
< 12TCEJ (1 + [o(s, 0)[2 + | X.[?)ds
0

< 0

for the same reasons as above. Again, remember that the value of the generic constant ¢ can change
from line to line. Now that we know that U maps H>¢ into itself, we prove that it is a strict con-
traction. In order to do so, we find convenient to change the norm of the Hilbert space H>¢ to an
equivalent norm. For each & > 0 we define a norm on the space H*? by:

2 T —at 2
Hanij et g, 2dt.
0

The norm | - | and the original norm | - || (which correspond to o = 0) are equivalent and define
the same topology. If X and Y are generic elements of H>¢ with Xo = Y5, we have

E|U(X): — U(Y):|?
2
+ 2E

2

< 2E ft[a(&Xs) —o(s,Ys)]|dWs

0

f [b(87 Xs) - b(S, n)]ds

0

t t
< 2tIEf |b(s, X5) — b(s, Ys)|*ds + SIEJ. lo(s, Xs) — o(s,Ys)|*ds
0 0

t
< ctf E|X, — Yi|*ds
0
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if we use the Lipschitz property of the coefficients. Consequently:
2 r 2
IUX) = U)o = J e “E|U(X)e — U(Y)["dt
0

T t
< ch e*aff E|X, — Y:|dsdt
0 0

T T
< CTJ E|Xs — Ysﬁdsf e *dt
0 t

cr 9
< Z HX - YHC!?
and U is indeed a strict contraction if o > ¢T" is large enough! Finally, we prove the estimate (7.2))
for the solution. For ¢ € [0, T'] fixed we have:

2
E sup |Xs|* =E sup

0<s<t 0<s<t

t t
<3 (E|Xo\2 + tIEJ b(s, X5)|*ds + 4EJ |a(s7Xs)|2ds>
0 0

Xo + f b(r, X, )dr + f o(r, X,)dW,
0 0

t
<c (1 + E|Xo|* + J E sup \X7'|2dr)
0 0<r<s
where the constant ¢ depends only upon 7', [|b( -, 0)|* and |o( -, 0)|?, and finally we conclude using
Gronwall inequality. o
For the sake of completeness we state the version of Gronwall and BDG inequalities
which we use throughout.

Remark 7.3 Gronwall’s inequality. Since we will use Gronwall’s inequality repeatedly in
the sequel, we state it for later reference:

t
p(t) < a+ f B(s)p(s)ds = o(t) < aelo P, (7.4)
0

Remark 7.4 BDG inequality. For each p € (0, ) there exist (universal) constants ¢, and
C), such that, for each continuous time martingale M = (My)o<i<r such that My = 0 we
have

e, E[< M > <E[ sup |[M;|"] < C,E[< M >2/?]. (1.5)

o<t<T

We shall use this inequality when M; = S(t) &AW for a adapted square integrable inte-
grand, in which case < M >7p= SOT || dt.

7.3 SPACES OF PROBABILITY MEASURES

Our goal is to study stochastic differential equations with coefficients which can depend
upon probability measures, and in particular, the marginal distributions of the solutions.
As we show later on, this type of nonlinearity occurs in the asymptotic regime of large
stochastic systems with mean field interactions.
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7.3.1 Notation

For any given measurable space (F, &), we denote by P(E) the set of probability measures
on (E, ). In the sequel, we shall most often assume that F is a complete separable metric
space, e.g. £ = R? or a separable Banach space with norm | - |. In such a case, the
o fiedl £ is taken to be the Borel o-field of E. For p > 1, we denote by P,(E) the set
of probability measures with finite second order moment (i.e. the set of those u € P(E)
for which §,. d(z, z¢)?pu(dx) < o) for some (or equivalently any) zo € E. Obviously,
we use the notation d for the distance of the metric space E. For p and v in P,(E), the
p-Wasserstein distance between p and v is defined by the formula

1/p
W®) (4, v) = inf { [J d(x,y)Pr(dx, dy)] ; ™€ P(E x E) with marginals g and v ¢ .

(7.6)
Any probability measure m € P(E x E) with marginals p and v is called a coupling of 1
and v. When F is a complete separable metric space (one often says FE is a Polish space)
the space P(E) is typically equipped with the topology of the weak convergence for which
P(E) is also a Polish space. This topology is in fact the topology of the convergence in the
sense of the modified Wasserstein distance TW(°) on P(E) defined as

WO (u,v) = inf {Jl A d(z,y) m(dx,dy); me P(E x E) with marginals p and v ¢ .

a7
Notice that the distance 1 A d(x,y) is bounded and cannot feel if the probability measures
have finite moments. In fact, the convergence in the sense of the p-Wasserstein distances
W ®) is equivalent to the weak convergence of measures together with the convergence of
all moments of order up to p.

In what follows, we shall almost exclusively use the distance W) which we call the
Wasserstein distance on the space P2 (E) which we call the Wasserstein space.

In order to formulate the results of this part of the chapter we need to give a mean-
ing to the continuity and Lipschitz property of functions of probability measures on the
space E = C([0, T]; R?) of R%-valued bounded continuous functions on [0, T'] equipped
with the norm of the uniform convergence. A notion of distance on the space of such mea-
sures is all we need for now. For the sake of definiteness, we rewrite the definitions of the
Wasserstein distances () and W) in the particular case of the complete metric space
E = C([0,T];RY).

o<t<T

w© (mq1,mg) = inf {f sup 1 A | Xe(w1) — Xe(we)| m(dwy, dws);

m e P(C([0, T;RY) x C([0, T];R%)), with marginals m; and m.}

where (X¢)o<i<7 is the canonical process w — X;(w) = w(t) on P(C([0,T];R)).
W) is a distance on P(C([0, T]; R%)) which defines a notion of convergence equivalent
to the weak convergence of probability measures. So P(C([0, T']; R?)) is a complete metric
space for W (), Similarly, we define P (C/([0, T]; R?) as the subset of P(C([0, T]; R?) of
the measures m with a finite moment of order 2, namely satisfying
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f sup | X;(w)]*m(dw) < .

o<t<T

The corresponding Wasserstein distance 7 (?) can be defined as:

0<t<T

1/2
w® (mq1,m2) = inf { [J sup | Xi(wy) — X,g(wg)|2 m(dwl,dwg)] ;

m € Po(C([0, T];R?) x C([0,T];R?)), with marginals m; and m}

and for later convenience we introduce the notation

1/2
Wt(Q) (my, mg) = inf { <J sup |Xs(wy) — Xs(wQ)|2 m(dwl,dwg)) :

0<s<t

m e Pa(C([0, T];R?Y) x C([0, T];RY)), with marginals m; and ma} ,

so that W(Q) (ml, mg) = W:;?) (ml, mg).

7.3.2 Example: Stochastic System with Mean Field Interactions

Let us consider the system of N stochastic differential equations with mean field interac-
tions:

N N
) ) 1 ) o1 ;
dXZ=bz<t,X§,NZéxtj)dtJraz(t,Xt’,ﬁZéxtj)dWZ, i=1,---,N (18
Jj=1 j=1

where the W' = (W§)o<t<T are independent Wiener processes fori = 1,--- , N, and the
(b, 0%) : [0, T] x 2 x R x Py(R?) > R x R4 satisfy assumption (A1) of the previous
section and are uniformly Lipschitz in the sense that:

Hbl(ta Z, ,U,) - bl(t 33/, ,u'/)”]QRd + HO’Z(t, Zz, /”') - Ui(ta xlv /J//)H]?gdxd
< (Hx_‘r/HDQQd+W(2)(Ma:u’/)2)7 i = 17 7N7

for a constant ¢ > 0 independent of ¢ € [0,7] and w € 2. In order to apply the existence
and uniqueness result proven earlier, we recast the system as an SDE in RV by setting

; 55 "
Xt = ) B(t7m) = 1) Wt =
xy b (t, N, % Zjvzl 5957-) wh

)

and Y(t, x) equal to the (Nd) x (Nd) block diagonal matrix with i-th diagonal block given
by ¢! (t7 X}, %+ Z;'V:1 §th). Since the system can be rewritten as the SDE

dX, = B(t, X,)dt + X(t, X, )dW,,
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in order to prove existence and uniqueness of a strong solution we only need to prove the
Lipschitz condition (A2). The latter is an immediate consequence of the Lipschitz assump-
tion on the coefficients b* and ¢* and the fact that by definition

W(Q)(li(sj 1i5/j)2<1i|$j_x/j|2
N &y et N &

as shown by using the coupling 7 = % Z;V=1 O(as 2td)-

7.4 SDES OF MCKEAN-VLASOV TYPE

We now introduce the assumptions on the coefficients of the non-linear stochastic differ-
ential equations which we study in this chapter. As in the classical case studied earlier, we
assume that (2, F,F, P) is a stochastic basis where the filtration F = (F})o<t<7 supports
a F-Brownian motion W = (W})o<i<r in R<. We are interested in stochastic differential
equations of the form

dXt = b(t, Xt, £(Xt))dt + O'(t, Xt, E(Xt))th (79)
where the coefficients b and o
(b,0): [0,T] x 2 x R? x P(RY) — R? x RP*™

satisfy the following assumptions.

(A1) Foreach z € R? and 1 € P(R?), the processes (b(t, x, it))o<t<r and (o (t, z, 1))o<i<T
are in H?? and H??™ respectively;
(A2)3c > 0,Vt € [0,T], Vw € 2, Vx, 2’ € RE, Yy, i € Pa(RY),

|(b7 U)(tvwv T, M) - (b’ 0) (t’wv .’L‘/, :u/)| < C("T - $I| + W(2)(:u7 MID
Here and in the following, we use the notation Px or £(X) for the distribution or law of

the random element X.

7.4.1 Examples of Mean Field Interactions

In practical applications, interactions through the marginal distribution of the process as is
the case of the SDE of McKean-Vlasov type come in various forms of complexity.

In the simplest case, which we shall call mean field interaction of scalar type, the
dependence upon the distribution degenerates into a dependence upon some moments of
this distribution. To be more specific, in the case of interactions of scalar type we have

b(t,w,z, 1) = b(t,w,z,{p, 1)) (7.10)

for some scalar function ¢ defined on R? and some function b defined on [0,T] x 2 x
R? x R. As before, we use the angular bracket notation
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{o, py = fs@(w’)du(ﬂc’)

for the integral of a function with respect to a measure.

Remark 7.5 It is clear that scalar interactions can include functions of several, say n,
moments of the measure. Still using the same notation and framework, it amounts to con-
sidering vector functions  taking values in a Euclidean space R™ and having the function
b be defined on [0,T] x 2 x R? x R™,

We shall also encounter applications in which the dependence upon the distribution is
given by means of an auxiliary function b defined on [0, T'] x §2 x R? x RY, the interaction
taking the form:

bWM%m=Jb@M%ﬁMWW .11
Rd

This type of mean field interaction will be called interaction of order 1. 1t is linear in p.
Similarly, one could define mean field interactions of higher orders. For example, a mean
field interaction of order 2 (which is quadratic in x) should be of the form

b(t,w,z, p) = JJ b(t,w,z, 2, " p(da" p(dz"). (7.12)
R4 xRd

7.4.2 Existence and Uniqueness of Solutions: the Lipschitz Case

Theorem 7.6 Let us assume that Xo € L? is independent of W, and that the coefficients
b and o satisfy the assumptions (Al) and (A2) stated above. Then, there exists a unique
solution to the equation in H>?, and for some c > 0 depending only upon T and the
Lipschitz constant of b and o, this solution satisfies

E sup |Xi|> <c(1+E|Xo|?)e . (7.13)

0<t<T

Proof: Letm e P2(C([0, T]; R?)) be temporarily fixed, and let us denote by m its time marginals,
i.e. the push-forward image of the measure m by X; viewed as a map from C([0, T]; R?) into R<.
By Lebesgue’s dominated convergence theorem, the inequality

W (i, me)? < j|Xs<w) X ()2 m(dw)

implies that the map [0, 7] 3 t < m; € P2(R?) is continuous for the Wasserstein distance W ().
Hence, substituting momentarily m, for £(X,) for all ¢ € [0, T in (T.9), since Xy is given, Theorem
gives existence and uniqueness of a strong solution of the classical stochastic differential equation

dXt = b(t, Xz,mt)dt + O'(t,Xt, mt)th (714)

with random coefficients, and we denote its solution by X™ = (X{™)o<t<r. We first notice that,
because of the upper bound proven in Theorem[7.2] the law of X™ is of order 2. We then define the
mapping @ : Po(C([0, T];R?)) 3 m — &(m) = L(X™) = Pxm € P2(C([0,T]; R?)). Since a
process X = (X;)o<t<r satisfying Esupg,<p | X¢|> < o0 is a solution of if and only if its
law is a fixed point of @, we prove the existence and uniqueness result of the theorem by proving that
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the mapping & has a unique fixed point. Let us choose m and m' in P2(C([0, T]; R?)). Then since
X" and X™ have the same initial conditions, for each ¢ € [0, T'], using Doob’s maximal inequality
and the Lipschitz assumption we have:

2
E sup | X" — X" |* < 2E sup

0<s<t 0<s<t

j [b(r, X7 my) — b(r, X7l )|dr
0

2
+E sup

0<s<t

f [o(r, X2 m0) — o(r, X7l )]dW,
0

t , t
<cT <J E sup X" — X" \2d5+J W(z)(ms,m;)ds
0

0 0<r<s

t !
-HEJ lo(r, X" ymy) — o(r, X" ,m'r)Ier)
0

t , t
<cr (J E sup | X" — X" |°ds + J W (ms, m;)ds) .
0 0o<r<s 0
As usual, and except for the dependence upon 1" which we keep track of, we use the same notation
even though the value of the constant ¢ can change from line to line. Using Gronwall’s inequality one
concludes that .
E sup | X7 — X7 ? < c(T)J W (mg,ml)*ds. (7.15)

o<ss<t 0

with ¢(T) = cTe". Notice that

W (@(m),d(m')) <E sup | X7 — X™|?
0<s<t
because the joint law £(X™, Xm/) of X™ and X™ is obviously a coupling of ¢(m) and p(m’).
Moreover, since W (m, m’,) < Wi (m,m’) so that (7.15) implies

Wt(Q)(é(m), @(m’)) < ¢(T) Lt W§(2)(m, m/)2 ds.

Iterating this inequality and denoting by @* the k-th composition of the mapping & with itself we get
that for any integer k£ > 1

W (@ (m), 8" (m)) < () j : W2 (@ (m), @ (m))? dt
< () J ! f " W (@72 (m), F 2 (m))? dtx_1dtx
0 0

<
Tt to

< C(T) f f T J‘ Wt(12> (m7 m')Z dtl s dtkfldtk
0 0 0

T k—1
= ¢(T)" J %Ws@)(m, m’)? ds
o !
ko
< ckj; W:(F2)(m,m')2,

which shows that for k large enough, ®* is a strict contraction and hence, ¢ admits a unique fixed
point. ©
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Remark 7.7 Let us fix p € C2(RY) and let us apply 1t6’s formula to o(X;). We get

o(Xy) = p(Xo) + L [%trace[o(s,Xs, LX) o(s, Xs, L(X,))D%*p(X,)]

+b(s, X, L(Xs)) Dp(Xs)ds + Jt Dp(Xs)o(s, Xs, L(Xs)) dWs.
0

Taking expectations of both sides and using the notation p; = L(X;) we get:

t

pupe) = o) + [ [y racela(s, ) (o, Dol o) + s o) D), ) s

0

and after integration by parts

t
1 .
{py ) = {p, po) + f <§fmce[0(57 ps) (s, o ps) D s — div(b(s, -, pus) s, ©)ds
0

or in differential form
Orpre = L(pe) pt

where for each t € [0,T] and i € P(R?), the second order partial differential operator
Li(w) is defined by:

L) = iracelo(t, -, p)lo(t, -, p)D*f — div[b(t, -, ) f].

This is a form of (non-linear) Kolmogorov’s equation for p = (pit)o<t<T-

7.4.3 Particle Approximations and Propagation of Chaos

Our next step is to study pathwise particle approximations of the solution of the McKean-
Vlasov SDE (7.9). In particular, this will provide a proof of the original propagation of
chaos result which was stated in terms of convergence of laws instead of a pathwise behav-
ior. Let ((X}, W%));>1 be a sequence of independent copies of (X, W). For each i > 1,
we let X¢ = (X})o<t<7 denote the solution of constructed in Theorem starting
from X} and driven by the Wiener process W*. It satisfies:

t t

b(s, X! L(XD))ds + J o(s, XL L(XH)dW?. (7.16)

X§:X3+f
0

0
Notice that the probability measures £(X?) do not depend upon i. Clearly, all the processes
X' are independent by construction. We show that they can be approximated by finite
systems of classical Itd processes (which we often call particles) depending upon each other
through specific interactions. For each integer N > 1, we consider the particle processes
X»N fori = 1,---, N solving the system of standard SDEs:

N

t t N
XN = X3+J b(s, XV, % Z 5X3,N)ds+f o (s, X0, % Z Sxin)dWi, (7.17)
0 i=1 0 i=1
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fori =1,---, N, where we use the standard notation J,, for the unit (Dirac) point mass at
x. Notice that the coupling between these /N SDEs is obtained by replacing in the McKean-
Vlasov dynamics (7.9), the distributions £(X}) whose presence creates the nonlinearity in
the form of a self-interaction, by the empirical distributions of the particles th’N N
XtN N The hope is that a form of Law of Large Numbers will prove that the impact of this
substitution on the solutions will be minimal. A simple application of the definition of the

Wasserstein distance to the case of point measures shows that if x = (x1,--- ,zy), and
y = (y1,--- ,yn) are generic elements of R?Y, one has:
1Y 1 & 1 & ey
wWO=Ns, =N )< | — i — yil? = —|x—yl 7.18
(ZV'2§; i ]V>2§% yz) ]V';§%|m y| \/j6+X: y‘ ( )

This implies for fixed IV, the uniform Lipschitz property for the coefficients of the system
(7.17) and in turn, existence and uniqueness of a strong solution. The main result of this
section establishes pathwise propagation of chaos for the interacting particle system (7.17).
The following lemma will be useful in the control of the particle approximation.

Lemma 7.8 Let j1 € Po(R?), let (£;)i>1 be a sequence of independent random variables
with common law p, and for each integer N = 1, let N denote the empirical distribution
of &1, En, namely p = % Zfil O¢,. Then for each N = 1 we have:

EWO N ) < [ faPutdn), and - lim B, ) =0,
R N—w

Proof: By the strong law of large numbers, 1™ converges weakly toward p almost surely as N — c0.
Similarly, foreach 1 < 4,5 < d,

lim zip (dz) = J zip(dx), and  lim zixip® (de) = J x5 p(dx)
R R

N—>o0 Rd N—>w Rrd

almost surely. Since the Wasserstein distance W@ induces the topology of weak convergence to-
gether with the convergence of all the moments up to order 2, one concludes that w® (1™, ) con-

verges toward 0 almost surely as N — c0. Moreover, the sequence (W (1™, 1)) n>1 of random
N

variables is uniformly integrable. Indeed, for any coupling 7 of x~° and p,
WO < [ ey aldndy)
R4 xR

N

JRdXRd(‘“’P + [y?) m(de, dy)
=2 ([ o () + [ ol i)

9 XN
:—E £i2+2f ) u(de
Ni:1| ‘ RdH (d)

which is nonnegative and converges almost surely toward 4 {_, ||>pe(dar) which is a finite constant.
Since the limit is a constant, the convergence is also in the sense of L' from which we conclude. ©
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Theorem 7.9 Under the above assumptions for the processes defined by (T.16) and (T.17)
we have: ' _
lim sup E sup [X/N —X/]?=0. (7.19)
No® 1N 0<t<T
Usually, propagation of chaos is a statement about distributions rather than a pathwise

statement. It says that for fixed k > 1, if we let N oo, then the law of (X/V)i=, tefo, T]k

converges toward the probability distribution of (X z) . e[o T]’ implying that the k particles
XLV ... X*N become independent and acquire the same distribution given by the solu-
tion of the McKean-Vlasov SDE (7.9). Theorem([7.9] and especially statement (7.19), give a
pathwise form of this statement by constructing the finite particle systems and their chaotic
limits on the same probability space and proving pathwise convergence via a mean field
coupling.

Proof: For any fixedt € [0,T], N > 1andi € {1,---, N}, we have:

N N
E sup [X2V — X2 < J Elb(s, X2V, N D6 i) —b(s X;,N D 6xi)Pds
k=1

0<s<t

k=1
t 1 N .
f Elb(s, X5, 7 2, 0x:) = bls, X5, £L(X0)|*ds

0

k=1
t ) 1 N 1 N
cf E|0‘(S7X;’N — Z 6 in) —U(s,XSZ— Z 6X1)|2ds
0 N k=1 = N =1
t N
f Elo(s Z i) —o(s, XL, L(XD)[*ds.
0 1

Using the Lipschitz property of the coefficients b and o, the elementary estimate (7.18) con-
trolling the distance between two empirical measures, and the exchangeability of the couples
(X*, X*N)1<i<n, one sees that the first and third terms of the above right are bounded from above
by cSéEsupoé,.gs |Xi’N — X!|?ds. Using GronwallOs inequality and once more the Lipschitz
property of the coefficients b and o, we get

. . t 1 X . )
B sup X2V - XE* < [ Blb(s, X0 D) ) - bls X0 LX) s

0<s<t 0 =1

" N
+CJ E|U(S,X§, ! Z 5X1;,N) —U(S,Xiyﬁ(X§)|2ds

The claim of the theorem now follows from Lemma and Lebesgue’s dominated convergence
theorem. ©



7.5 SOME IMPORTANT EXAMPLES
7.5.1 The Kuramoto Model

The Kuramoto model (KM) of coupled phase oscillators is a very popular example of dy-
namical system, its success being mostly due to its analytical simplicity and universality of
the dynamical mechanisms that it helped to reveal. It describes the evolution of a system of
N interconnected phase oscillators 6V:% : [0, o0)maptoR /27wZ with intrinsic frequencies
wV¥ for i = 1,---, N. Their dynamics are given by the following system of Ordinary
Differential Equations (ODE) :

N
gi\“:wN7i+%Za%sin(@i\[’z—QtN’lﬂ-OZ)? i€ [N],
i=1

where & is the strength of the coupling, o € [0, 27)specifies the type of interaction (at-
tractive or repulsive), and the symmeric matrix a” = [af\;]Z j=1,..,~ defines the graph
underpinning the network of interactions between the oscillators. One of the most interest-
ing properties of this dynamical system is the existence of a critical value . separating
incoherent dynamics from perfect synchronization.

The sum on the right-hand side models the interactions between the oscillators, o €
[0, 27) determines the type of interactions (attractive vs repulsive), and K is the strength
of coupling. The spatial structure of interconnections is encoded in the adjacency matrix
(a¥7). The KM plays an important role in the theory of synchronization. We mention two
major contributions that are especially relevant to the present study. First, it reveals a uni-
versal mechanism for the transition to synchronization in systems of coupled oscillators
with random intrinsic frequencies. The analysis of the KM shows that there is a critical
value of the coupling strength Kc separating the incoherent (mixing) dynamics (Fig. 1a)
from synchronization (Fig. 1b) [19, 7, 8]. Second, studies of the KM led to the discovery
of chimera states, patterns combining regions of coherent and incoherent dynamics
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Stochastic Differential Games

This chapter is devoted to the analysis of stochastic differential games with a strong empha-
sis on several important features which may not always be compatible. First, we extend to
stochastic differential games the notion of anonymous game, especially games with mean
field interactions leading to what is now known as Mean Field Games (MFGs). Concur-
rently, we consider games for which the interactions between players are underpinned by
a graph structure, possibly breaking the symmetry of the interactions found in MFGs. In
both cases, we focus on a probabilistic approach (as opposed to those based on PDEs). To
this end, we present a version of the stochastic maximum principle and we apply it to the
solution of a simple Linear Quadratic (LQ) model chosen in hope that its limit when the
number of players go to infinity can be analyzed.

8.1 INTRODUCTION AND FIRST DEFINITIONS

The purpose of this chapter is to introduce and develop the mathematical analysis of com-
petitive stochastic differential games with finitely many players. We denote by N the
number of players. We label them by the integers 1,--- , N, using frequently the nota-
tion [N] = {1,---, N}. At each time ¢, the players act on a system whose state X; they
influence through their actions, the dynamics of X; being given by a stochastic differential
equation of the It6’s type. The Itd process giving the state dynamics is driven by a m-
dimensional Wiener process W = (W;)o<:<7 defined on a probability space (2, F,P),
the filtration F = (F})o<t<7 being assumed to be most of the time its natural filtration.
We denote by A',---, AN the sets of actions that players 1,--- , N can take at any
point in time. A? is typically a compact metric space or a subset of a closed convex subset
of a Euclidean space, say A — R¥:, and we denote by A’ its Borel o-field. We will use
the notation A = A! x --- x AN for the set of actions a = (a!,---, ") available to
players 1,--- | N at any given time. Also, in order to emphasize the multivariate nature
of the game models (as opposed to the single agent nature of control problems) we use
the term strategy profile. We use the notation A for the set of admissible strategy profiles.
The elements o of A are N-tuples a = (al, - ,a®) where each o' = (a!)o<i<r
is a A’-valued adapted process. Moreover, these individual strategies will have to satisfy
extra conditions (e.g. measurability and integrability constraints) which change from one
application to another. In most of the cases considered here, we shall assume that these con-
straints can be defined player by player, independently of each other. To be more specific,
we shall often assume that A = A! x .- x AN where foreachi € {1,--- , N}, A’ is the
space of controls / strategies which are deemed admissible to player i, irrespective of what
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the other players do. Typically, A’ will be a space of A’-valued, progressively measurable
processes ' = (al)o<i<7 being either bounded, or satisfying an integrability condition

such as E Sg |od|2dt < oo.

A Convenient Notation. If o = (a!,---,a") € A,i e {1,---,N}, and 3* € A?, we
will denote by (a~¢, 3%) the collective set of actions where all players except player i
keep the same actions, while player i switches from action o’ to 3%. Similarly, if & =
(al, -+ ,a™) € A is a set of admissible strategies for the N players, and B e Alis
an admissible strategy for player ¢, then we denote by (a_iz Bi) the new set of strategies
where at each time ¢ all players j +# i keep the same action ¢} while player i switches from

action ! to ¢, In other words, (%, 3%)7 is equal to o if j # i and 3¢ otherwise.
t t t q g t

For each choice of admissible strategy profile o = (¢ )o<t<r € A, it is assumed that
the time evolution of the state X = X of the system satisfies:

dXt = b(t,Xt, Oét)dt + O'(t,Xt, Oét)th 0 <t < T, (8 1)
Xo =Xx. '
where
(b,) : [0.T] x 2 x R x A — R x R¥*™
satisfies

(al) Va e RY Va e A, (b(t,2,a))o<t<r and (o(t,x, a))o<i<T are progressively mea-
surable processes with values in R% and R?*™ respectively;

(@2) 3dc>0,Vte[0,T],Yae A, Vw e 2,Vx, 2" € RY,
|b(t,w, x, ) — b(t,w, 2, )| + |o(t,w, z,a) — o(t,w,2’,a)| < clz — 2|

As usual, we omit w from the notation whenever possible.

Unless the a! are in Markovian feedback form (i.e. of the form a! = ¢(t, X;) for
some deterministic function (¢,x) — ¢(t,x)) the dynamics given by (8.1) are given by a
stochastic differential equation whose coefficients depend upon the past.

8.1.1 A Frequently Encountered Special Case

It happens often that the state of the system is the aggregation of private states of individual
players, say X; = (X}, , X}N) where X} € R% can be interpreted as the private state of
playeri e {1,--- ,N}.Here d = d; + - - - + dy and consequently, R? = R x ... x R~
The main feature of such a special case is that we usually assume that the dynamics of
the private states are given by stochastic differential equations driven by separate Wiener
processes W' = (W{)o<t<T Which are most often assumed to be independent of each
other. See nevertheless our discussion of the common noise case later on. So typically we
assume that

dX} = b'(t, Xy, ap)dt + o' (t, X¢, o )dW} 0<t<T,i=1,---,N (82)

where the W' = (W) o<t<T are m;-dimensional independent Wiener processes giving
the components of W = (W )o<i<7, and where the functions
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(biao—i) : [OT] X Q X Rd X A (SN Rdi X Rdﬁ@ni

satisfy the same assumptions as before. It is important to notice that these N dynamical
equations are coupled by the fact that all the private states and all the actions enter into
the coefficients of these N equations. We can use vector/matrix notation, and rewrite the
system of IV stochastic dynamical equations in Euclidean spaces of dimensions d1, - - - , dn
respectively as a stochastic differential equation giving the dynamics of the d-dimensional
state X;. So if we set

th bl (tvxaa) th
Xt2 b2<ta x, Oé) Wt2

Xi = . ’ b(t,l’, Oé) = . ’ and W, = . ) (83)
XN WY (t, 2, ) wh

withm =mq1 +--- + my and

ot(t,z, ) 0 0
0 a?(t,z, q) 0
O'(t,ﬂi,Oé) = .
0 0 oN(t,z,a)

we recover the dynamics of the state of the system given by (8.1)). However, it is important
to emphasize the special block-diagonal structure of the volatility matrix o, and most im-
portantly, the fact that when the Wiener processes W are not independent, the components
of the Wiener process W are not independent which is an assumption which we often make
when we use dynamics of the form (8.1).

The popularity of this formulation is due to the ease with which we can define the infor-
mation structures and admissible strategy profiles of some specific games of interest. For
example, in a game where each player can only use the information of the state of the sys-
tem at time ¢ when making a strategic decision at that time, the admissible strategy profiles
will be of the form o = ¢'(t, X;) for some deterministic function ¢*. These strategies are
said to be closed loop in feedback form, or Markovian. Moreover, if the information which
can be used by player 7 at time ¢ can only depend upon his/her own private state at time ¢,
then the admissible strategy profiles will be of the form o = ¢*(¢, X}). Such strategies are
usually called distributed.

8.1.2 Cost Functionals and Notions of Optimality

In full analogy with the case of stochastic control involving only one controller, we as-
sume that each player (controller) faces instantaneous and running costs. So for each
i€ {l,---, N} we assume that we have

e an Fr-measurable square integrable random variable ¢ € L2 (2, Fr,P) usually called
the terminal cost. Most often, ¢ will be of the form & = ¢*(X7) for some Fr x Bpa-
measurable function ¢ : £2 x R? < R which is assumed to grow at most quadratically;
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e afunction f': [0,T] x 2 x R? x A < R called the running cost satisfying the same
assumption as the drift b;

from which we define the overall expected cost to player ¢

e (cost functional) If the N players use the strategy profile a € A, the expected total cost
to player ¢ is defined as

T
JHa) = E[L fi(s, Xs, a5)ds + £}, a=(al,- - ,aN) eA, 84

where X is the state of the system whose dynamics are given by equation (8.1}

Notice that, in the general situation considered here, the cost to a given player depends
upon the strategies used by the other players indirectly through the values of the state X}
over time, but also directly as the specific actions o taken by the other players may appear
explicitly in the expression of the running const f* of player i.

Each player 4 attempts to minimize his/her total expected cost .J%. If we introduce the
notation
J(a)=(JHa), -, JV(a), acAh,

heuristically speaking, finding a solution to the game amounts to searching for a solution to
the stochastic optimization problem for the functional .J over the set A of admissible strat-
egy profiles. The major difficulty is that .J is taking values in a multidimensional Euclidean
space which is not totally ordered in a natural fashion. We need to specify how we compare
the costs of different strategy profiles in order to clearly define the notion of optimality. We
shall use the notion of Nash equilibrium.

Definition 8.1 A set of admissible strategies o* = (a*',---  a*N) € A is said to be a

Nash equilibrium for the game if
Vie{l,---,N}, Ya'eA’ JHa*) < JH(a* ' ab).
NB: Nash equilibriums are not Pareto efficient in general!

The existence and uniqueness (or lack thereof) of equilibriums, as well as the proper-
ties of the corresponding optimal strategy profiles strongly depend upon the information
structures available to the players, and the types of actions they are allowed to take. So
rather than referring to a single game with several information structures and admissible
strategy profiles for the players, we choose to talk about models, e.g. the open loop model
for the game or the closed loop model, or even the Markovian model for the game. We give
precise definitions below. The published literature on stochastic differential games, at least
the part addressing terminology issues, is rather limited, and there is no clear consensus on
the names to give to the many notions of admissibility for strategy profiles. We warn the
reader that the definitions we use reflect our own personal biases and, this disclaimer being
out of the way, the best we can do is to pledge consistency with our choices.

Definition 8.2 If the strategy profile a* = (a*!,--- ,a*V) € A satisfies the conditions
of Definition without further restriction on the strategies a*' and o', we say that o*
is an open loop Nash equilibrium (OLNE for short) for the game, or equivalently, a Nash
equilibrium for the open loop game model.
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If the filtration F is generated by the Wiener process W, except possibly for the presence
of independent events in Fy, the strategy profiles used in an open loop game model can be
viewed as given by controls of the form

aiz; = Soi(t> XO? W[O,t])

for some deterministic functions ¢!, -+ , " where we used the notation Wio,q for the
path of the Wiener process between time ¢ = 0 and ¢. The definition of open loop equi-
librium warrants some caution. This definition is very natural and very convenient from a
mathematical point of view, and we shall see that powerful existence results can be proved
for these game models. However, it is rather unrealistic from a practical point of view. In-
deed, it is very difficult to imagine situations in which the whole trajectory Wi ;; of the
random shocks can be observed. So using functions of this trajectory as strategies does not
seem very constructive as an approach to the search for an equilibrium !

Definition 8.3 If the strategy profile o* = (a*!,---  a*N) € A satisfies the conditions of
Deﬁnitionwith the restriction that the strategies o** and ot are deterministic functions
of time and the initial state, we say that o* is a deterministic Nash equilibrium (DNE for
short) for the game.

The strategy profiles used in the search for a deterministic equilibrium are given by controls
of the form ‘ ‘
O‘iZE = ¢* (ta XO)

for some deterministic functions !, -+, " of the time variable ¢ and the state of the
system x. Given the fact that the Wiener process W is not present in deterministic game
models, the above definitions are consistent with the standard terminology used in the clas-
sical analysis of deterministic games.

Definition 8.4 If the strategy profile o* = (a*!,---  a*N) € A satisfies the conditions of
Definition|8.1|with the restriction that the strategies o** and o are deterministic functions
of time and the trajectory of the state between time t = 0 and t, we say that o* is a closed
loop Nash equilibrium (CLNE for short) for the game, or equivalently, a Nash equilibrium
for the closed loop game model.

The strategy profiles used in the search for a closed loop equilibrium are given by controls

of the form ' '
ay = @' (t, X[o,4)
for some deterministic functions @', - - - , ™. Finally,
Definition 8.5 If the strategy profile o* = (a*',---  a*N) € A satisfies the conditions of

Deﬁnitionwith the restriction that the strategies o** and ot are deterministic functions
of time, the initial state and the trajectory of the state at time t, we say that o is a closed
loop Nash equilibrium in feedback form (CLFFNE for short) for the game.

The strategy profiles used in the search for a closed loop equilibrium in feedback form are
given by controls of the form _ _
O‘zlf = @l(t Xo, Xt)
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for some deterministic functions ¢, - - - , ™. The most important example of application
of this notion of equilibrium concerns the case of deterministic drift and volatility coeffi-
cients b and o, and cost functions f and g. This case will be discussed in Subsection [8.1.4
treating Markovian diffusions and we shall strengthen the notion of closed loop equilibrium
in feedback form into the notion of Markovian equilibriumm.

Remark 8.6 While we went out on a limb in our choice for the definition of open loop mod-
els, the following remarks are consistent with the terminology used in most write ups on
deterministic games. Typically, in the open loop model, players cannot observe the play of
their opponents while in the closed loop model, at each time, all past play is common knowl-
edge. From a mathematical stand point, open loop equilibriums are more tractable than
closed loop equilibriums because players need not consider how their opponents would re-
act to deviations from the equilibrium path. With this in mind. one should expect that when
the impact of players on their opponents’ costs/rewards is small, open loop and closed
loop equilibriums should be the same. We shall see instances of this intuition in the large
N limit of the Linear Quadratic (LQ) model of systemic risk analyzed in Section ?? and in
our discussion of Mean Field Games (MFG) in Chapter ??.

8.1.3 Toward a Version of the Pontryagin Stochastic Maximum Principle
Players’ Hamiltonians

For each player i € [ V], we define their Hamiltonian as the function H*:

[0,7] x 2 x RY x RY x R¥>*™ x A 5 (t,x,y,2,0) — Hi(t,z,y,z,0) e R (8.5)

defined by
Hi(t,z,y,z,0) = b(t,z,a)-y + trace [o(t,z, ) 2]+ fi(t,z, ).
S~ o~~~ ~ ~~ - S~~~
inner product of inner product of running cost
state drift b and state volatility o of player ¢
covariable y and covariable z

When the actions of the players do not appear in the volatility of the state (i.e. when the
volatility is not controlled), we use the reduced Hamiltonians

ﬁ%t,x,y,a) = b(tvxva) "y + fi(tvl'ya)'

whose minimum in the variable o/ is attained for the same value as for the full Hamiltonian.
We explain below the relevance of this remark.

Generalized Isaacs (MinMax) Condition

The following definition is motivated by the generalization to stochastic differential games
of the necessary part of the stochastic maximum principle which we give below.
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Definition 8.7 We say that the generalized Isaacs (minmax) condition holds if there exists
a function

& :[0,T] x R x (RHN x R>*™N 5 (t,2,y,2) — a(t,z,y,2) € A

satisfying, for everyi e {1,--- N}, t € [0,T], z e R%, y = (yt, -+ ,yN) € (RN and
2= (e 2N) € (RO

Hi(t7mayi72iad(t7may7z)) < Hi(t7x7yiazia (d(ugj,y,z)_i,o/)) for all ai € Al
(8.6)

Notice that in this definition, the function & could depend upon the random scenario

w € £2 if the Hamiltonians H* do. In words, this definition says that for each set of dual

variables y = (y!,--- ,y")and z = (2},---, 2), for each time  and state  at time ¢,

and possibly random scenario w, one can find a set of actions & = (&', -+ , &) depending

on these quantities, and such that if we fix N — 1 of these actions, say &%, then the
remaining one & minimizes the i-th Hamiltonian in the sense that:

&' earg inf Hi(t,z,y', 2", (&%), forallie {1,---,N}. (8.7)

ate Al

The notation can be lightened slightly when the volatility is not controlled. Indeed,
as we explained above, minimizing the Hamiltonian gives the same & as minimizing the
reduced Hamiltonian. Note also that in this case, the argument & of the minimization is
independent of z. So when the volatility is not controlled we say that the generalized Isaacs
(minmax) condition holds if there exists a function

a:[0,T] x RT x RHYN 5 (t,2,y,2) — a*(t,z,y) € A
satisfying
Vie{l,---,N},Vte[0,T],Yze R, vy = (y',--- ,yN) e RHY,

Hi(t,z,y', a(t,z,y)) < H(t,z,y', (6t z,y) "% ab))  foralla’ e A'. (8.8)
Rationale: the fact that individual players’ Hamiltonians should be minimized is suggested
by the construction of the best response function as a solutions of NV stochastic control prob-
lems and the necessary part of the Pontryagin stochastic maximum principle for stochas-
tic control problems. Accordingly, the fact that the same function & minimizes ALL the

Hamiltonians simultaneously is dictated by search for a fixed point of the best response
function.

8.1.4 The Particular Case of Markovian / Diffusion Dynamics

In most applications for which actual numerical computations are possible, the coefficients
of the state dynamics depend only upon the present value X, of the state instead of the
entire past X[ ¢ of the state of the system, or of the Wlener process driving the evolution
of the state. In this case, the dynamics of the state are given by a diffusion-like equation

dXt = b(t7Xt, Oét)dt + O'(t,Xt, Oét)th 0<t< T, (89)
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with initial condition Xy = x, and for deterministic drift and volatility functions
(b,0): [0,T] x R x A 3 (t,x,a) — (b(t,z,a),0(t,z,a)) € RT x R*™,

So except for the fact that the strategy profile o may depend upon the past (feature that
we are about to discard) the solution of should be like a Markov diffusion. For this
reason, we shall concentrate on strategy profiles which are deterministic functions of time
and the current value of the state to indeed force the controlled state process to be a Markov
diffusion. In fact, we shall also assume that the running cost functions f i and the terminal
cost random variables £¢ are Markovian in the sense that, like b and o, f* does not depend
upon the random scenario w € {2, but only upon the current values of the state and the
actions taken by the players, so that we can have f% : [0,7] x RY x A > (t,7,a) —
fi(t,z, o) € R, and " is of the form ' = ¢g*(X7) for some measurable function ¢* : R? 5
x — g'(x) € R with (at most) quadratic growth. So in the case of Markovian / diffusion
dynamics, the cost functional of player ¢ is of the form:

T
JHa) = ]E{f Fit, Xy, op)dt + g'(X7)}, acl, (8.10)
0

and we tailor the notion of equilibrium to this situation by considering closed loop strat-
egy profiles in feedback forms which provide simultaneously Nash equilibriums for all the
games starting at times ¢ € [0,7] (i.e. over the time periods [¢,7]) and all the possible
initial conditions X; = x as long as they share the same drift and volatility coefficients b
and o, and cost functions f? and g°.

Markov Nash Equilibriums

Inspired by the notion of sub-game perfect equilibriums, we introduce the strongest notion
yet of Nash equilibrium.

Definition 8.8 A set ¢ = (p',--- , ) of N deterministic functions ¢ : [0,T] x R? —
RF fori = 1,---, N is said to be a Markov Nash equilibrium (MNE for short), or a Nash
equilibrium for the Markovian game model if for each (t,z) € [0,T] x RY, the strategy
profile a* = (a*!,--- ,a*N) € A defined for s € [t,T] by a*' = i(s, X\*) where
X" is the unique solution of the stochastic differential equation

dXS = b(57 XS7 ¢(S, XG))ds + 0(57 XS7 (;5(5, XG))dW‘?7 t <8< T
with initial condition Xy = x, satisfies the conditions of Definition [8-1) with the restriction
that the strategy o' is also given by a deterministic function @ on [t,T] x R%.

It goes without saying that regularity assumptions on the functions ¢’ are needed for the
stochastic differential equations giving the dynamics of the controlled state to have a unique
strong solution. Typically, we assume that

the coefficients b and o are Lipschitz in (z, ) uniformly in ¢ € [0, T'].

The strategy profiles used in the above definition are called Markovian strategy profiles.
Obviously, they are close loop in feedback form.
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8.2 GAME VERSION OF THE STOCHASTIC MAXIMUM PRINCIPLE

Proving generalizations of the Pontryagin maximum principle to stochastic games is not
as straightforward as one would like. In these lectures, we limit ourselves to open loop
equilibriums for the sake of simplicity. Throughout this section, we assume that the drift
and volatility functions, as well as the running and terminal cost functions are determin-
istic functions which are differentiable with respect to the variable xz, and that the partial
derivatives 0,b, 0,0, 0, f* and 0,g° fori = 1,--- , N are uniformly bounded. Notice that
since b takes values in R* and = € R?, 8,b is an element of R%*<, in other words a d x d
matrix whose entries are the partial derivatives of the components b’ of b with respect to
the components z° of x. Analog statements can be made concerning J,0 which has the
interpretation of a tensor.

8.2.1 Open Loop Equilibriums

The generalization of the stochastic Pontryagin maximum principle to open loop stochastic
games can be approached in a very natural way, and forms of the open loop sufficient
condition for the existence and identification of a Nash equilibrium have been used in the
case of linear quadratic models. See the Notes & Complements at the end of the chapter
for references.

Definition 8.9 Given an open loop admissible strategy profile o € A and the correspond-
ing evolution X = X< of the state of the system, a set of N couples (Y, Z"%) =

(Y, Zti’a)te[o,;p] of processes in S*® and H>**™ respectively fori = 1,--- , N, is said
to be a set of adjoint processes associated with a € A if for each player i € {1,--- | N}
they satisfy the BSDEs

{ AY[® = —0.H'(t, X, Y, 2% o)t + ZdW, S0

Vi = 0,9"(X7).

We shall not argue the existence and uniqueness of the adjoint processes here. Even though
we did not present the theory of Backward Stochastic Differential Equations (BSDESs) here,
existence and uniqueness do not represent an issue under the present hypotheses. Indeed,
given a € A and the corresponding state evolution X = X, equation can be
viewed as a BSDE with random coefficients, terminal condition in L?, and driver:

Y(t,w,y,z) = —0zb(t, Xp(w), ar(w)) - y — Opo (t, Xy (w), au(w)) - 2
— 0o fi(t, Xi(w), ag(w))

which is an affine function of y and z with uniformly bounded random coefficients and
an L? intercept. So for each i € {1,---, N}, existence and uniqueness of a solution
(Y,", Z;*)o<t<T follows from standard existence results. See for example Theorem ??.

The following result is the open loop game version of the necessary part of the Pon-
tryagin maximum principle. Its proof can be conducted along the lines of the corresponding
proof in the case of stochastic control. We do not give it as we only use this result as a ra-
tionale for the search for a function satisfying the min-max Isaacs condition.
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Theorem 8.10 Under the above conditions, if a* € A is a Nash equilibrium for the open
loop game, and if we denote by X* = (X[)o<t<T the corresponding controlled state
of the system, and by (Y*,Z*) = (Y*',--. ) Y*N),(Z2*,. .. ,Z*N)) a set of adjoint
processes, then the generalized min-max Isaacs conditions hold along the optimal paths in
the sense that for eachi € {1,--- /N}:

H'(t, X} Y* ZF of) = inf H'(t, X}, YV, ZF, (a* " a")), dt®dP as. (8.12)

ateAl

We now state and prove the sufficient condition which we will use in the applications
we consider in these lectures.

Theorem 8.11 Assuming that the functions b, o and f* are twice continuously differ-
entiable in (r,a) € RY x A and g* are twice continuously differentiable in x € RY,
all with bounded partial derivatives, if & € A is an admissible adapted (open loop)
strategy profile, X = (Xt)0<t<T the corresponding controlled state, and (Y, Z) =

((Y1 7YN) (Z1 ,ZN)) a set of corresponding adjoint processes such that for
eachie{l,--- /N}:

1. (z,a) — H(t,x, Y/t", ZZ, ) is a convex function , dt ® dP a.s.;

2. gi is convex,

and if moreover, for every i € {1,--- , N} we have:

Hi(t, X, Y7, ZE, Gy) = Jinf Hi(t, X, Yy, Z8 (670 o)), dt®dPas., (8.13)
.

then & is a Nash equilibrium for the open loop game.

Proof: We fixi € {1,--- N 1, a generic (adapted) a’ € A, and for the sake of simplicity, we
denote by X the state X (&7%a") controlled by the strategies (dfi, a'). The function g* being
convex almost surely, we have:

9'(Xr) — ¢'(X7)
(X1 — X1)0:9"(X7)

= (X7 — X1)Y7

/A

T . T ~ - ~ T ~ . . ~
= J‘ (Xt — Xt) dYtl + J Y;l d(Xt — Xt) + J [U(t,Xt,éét) — U(t,Xt, (OAé_l,Oél))] . ZZ dt
0 0

T T
= 7[ (Xt 7Xt)aIHl(taXt7YtlaZtZadt) dt+f ﬁl[b(taXtvdt) 7b(t7Xt7(dil7al))] di
0 0

T . . .
+J [o(t, X1,a0) — o(t, X, (6, a'))] - 2§ dt + martingale (8.14)
0

So that, taking expectations of both sides and plugging the result into

J(a) - J (& e ]E{f (8, Xey6e) = f1(t, Xe, (677, @))]dt} +E{g' (X7) — g' (X7)}

we get:
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J'(&) - J' (@7 ah) = E{L [H'(t, X0, VY, Z{,60) — H'(t, X0, V¢, Z, (67", o))]dt}
- IE{L Yi[b(t, Xt, éu) — b(t, X, (&%, a))] dt}

T . . .
- E{J [o(t, £, 60) — o(t, X, (677, a'))] - 2 dt)
0
+E{g"(X7) — ¢'(X1)}
T
< E{J‘ [Hi(tht7ﬁi7Z§7&t) - Hi(taXt7ﬁi7Z§7 (&_iaai))
0

— (X¢ — X))o H' (t, X, Vi, Zi, éu)] dt}
<0, (8.15)

because the above integrand is non-positive for d¢ ® dP almost all (t,w) € [0,T] x §2. Indeed,
this is easily seen by a second order Taylor expansion as a function of (x, @), using the convexity
assumption and the fact that & is a critical point (where the first order derivative vanishes) because it
satisfies the generalized Isaacs condition by assumption. ©

Implementation Strategy

We shall try to use this sufficient condition in the following manner. When the coefficients
of the model are differentiable with respect to the state variable x with bounded derivatives,
if the convexity assumptions 1. and 2. of the above theorem are satisfied, we shall search
for a deterministic function &

(t7.'IJ, (yla"' 7yN),<Z17"' 7ZN>) — é[(t,l', (y17"' 7yN>7(Zla"' 7ZN)) EA

on [0,7] x R? x RV x RN which satisfies Isaacs conditions. Next, we replace the
adapted controls « in the forward dynamics of the state as well as in the adjoint BSDEs by

é‘(t>Xt7(Ytl>"' =YtN)7(Zt1ﬂ"' 7ZtN))'

This creates a large FBSDE comprising a forward equation in dimension d and N back-
ward equations in dimension d. The couplings between these equations may be highly
nonlinear, and this system may be very difficult to solve. However, if we find processes X,
(Y-, YN),(Z',---, Z") solving this FBSDE

dXt = b(t,Xt, d(ta Xtv (}/tla e 7}/;SN)7 (Ztlv T aZtN)))dt
+ J(taXtv OA‘(ta Xt7 (Ytlﬂ T 7YtN)7 (Zt17 T 7ZtN)))th7
d}/tl = _aa:Hl(taXtvnl7 Zt17 OA‘(taXta (}/;1, T 7Y;£N)7 (Ztla T 7ZtJV)))dt + Ztlth7
dYtN = 7a”ﬂHN(t7Xta }/th ZthOA‘(taXta (Y;Slv T 7Y;N)a (Zf17 e aZfN)))dt + ZtNthv
(8.16)

with initial condition Xy = x for the forward equation, and for each i € {1,--- , N}, ter-
minal condition Yfl = 0,4" (X7) for the backward equation, the above sufficient condition
says that the strategy profile & defined by &; = a(t, Xy, (Y2, -+, YY), (Z}, -+, ZN)) is
an open loop Nash equilibrium.
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8.3 FIRST APPLICATION TO A SIMPLE NETWORK GAME

We first describe the model.

8.3.1 The Finite Player Game Model

For each N, positive integer denoting the number of players, let W& = [wlNJ]Z j=1,.,N be
an N x N symmetric matrix of real numbers. We want to think of the integers in {1, ..., N}
as players, and W,]\g as a weight quantifying the strength of the interaction between players
7 and 7. When these weights only take values O or 1, the matrix W is merely the adjacency
matrix of the graph of players, to be understood as a way to indicate the couples of players
in interaction. For the sake of definiteness, we shall assume that w!} = 0. So players do not
interact with themselves. We carry the superscript NV to emphasize the number of players
as we intend to eventually take the limit N — o0 to analyze the situation for large network
games.

We denote by A the set of actions which are admissible to each player. A will typically
be a closed convex subset of a Euclidean space R¢.

Let (2, F,P) a probability space on which is defined a sequence (B™),,>1 of indepen-
dent processes of Brownian motion, B” = (BJ'):>0, and we denote by F = (F%):>0 the
filtration 7, = o{B? : 0 < s <t, n > 1}. We also assume the existence of a sequence
(X% )n=1 of independent random variables in R? which is independent of the sequence of
Brownian motions.

For each N > 1, we denote by (X N ’i)i=17... . the Itd stochastic processes with initial

conditions Xév = X} and stochastic differentials:
dxN' = aMdt + ondB!,  i=1,---,N.

where for each i € [N], o™V = (aiv’i)ogth is an R*-valued process progressively
measurable with respect to the filtration generated by the Brownian motion B —
(BY,--. ,BY). X;V ** represents the (private) state of player ¢ in the N player version of
our game, and (O{iV7i)OStST the control process giving their strategy. For the sake of sim-
plicity we assume that the dimensions dy, - - -, dv of all the private states are equal to 1 so
that d = N. As a result all the k; are also equal to 1 and aiv T eR.

We complete the definition of the game by introducing the costs incurred by the players.
The cost to player ¢ € [N] is given by:

T
Ji(aN’la"' ’aN,N) = E[L fi(ta (XtN)la"' ’XtN,N)7aivyl)dt]

with

i 1 N Loy /5, 196y 7|2
f(t,($7---,x )70[):§|Oé| +?|x —NZw”x|
j=1

This quadratic cost has two components. First, a penalization for the choice of the action
«a € A, and second a penalty of the state 2* of player i to be far from the aggregate of the
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states of the players they are interacting with. Note that this aggregate involves the graph
structure underpinning the interactions in the network, and that it changes with 7. As a
result, while this interaction is mean field when wf}[ = 1, in general, this type of interaction
is not mean field because the symmetry between the players is broken by the particular
structure of the graph.

8.3.2 Construction of Nash Equilibriums

We use the sufficient condition of the Pontryagin stochastic maximum principle to identify
a Nash equilibrium for this game. Notice that for each i € [N], the terminal cost is zero
which is obviously convex. Moreover, the Hamiltonian of player ¢ reads:

, o N N 2 1 X ,
H'(t,z,y" 2" o) = j;ajy” +szl 297 4 §|O/|2 +5let ~ N;ngjﬁ

which is clearly convex in (2, ¢) so that conditions 1. and 2. of Theorem are satisfied.

Also, the minimization of H* with respect to o can easily be achieved since:

OH?
oot

—0 o yitai=0 < al=_yi

So using the notation of the above Implementation Strategy subsection, the function &
satisfying the Isaacs conditions is given by:

d(ta x, (y17 e 7yN)a (2:17 e aZN)) = (_ylla R} _yNN)
Since
OH'(-+) _ of ;i 10 N LN
L DD
J=
the forward/backward system (8.16) becomes (dropping momentarily the superscript N for
convenience):

dXj = ~Yjidt + 0dBi, i=1,--- N
4 = —r2(Xi = & 50wl X7 ) (65— dwl )ar+ S, Z7MdBE, 8.17)
iaj = 1) T aN

with initial conditions X} for the N forward equations and YTij = 0 for the N2 backward
equations. Below, we first solve the system

dX} = -Y/idt + 0dB}, i=1,---,N
vt = (Xt N X Jabs S ZABE =N,

J

recall that we assumed wf;/ = 0, and then we shall set

T N
i o 4 o
Y;j:/i2E[J; (X;—NE ngg)ds)ft], for j # i.
j=1
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This is indeed the desired solution because

N
Y = f (XZ = Z wNXJ>ds + fﬁEU (X7 = Z NXJ)ds(Ft],
and
M, = KQE[J (XZ B 2 wh g)ds‘}‘t]
being a martingale in the Brownian filtration (]:t)tZOs it can be represented as a stochastic

integral with respect to the Brownian motion processes generating the filtration. In other
words, there exist square integrable processes (Z*),_; .. x such that:

N t
= EJ ZUkdBE o<t
k=10

which is exactly what was needed to complete the solution of the adjoint equations. See for
example [21, Theorem 4.15 p. 182]. In order to streamline the notations we set:

N

T,

X1 yll Z111 o leN Bl
X% Yz22 Z221 . ZZZN BZQ
Xt = . ) }/t = . P Zt = . . ) and Bt = . )
' ' (8.19)

so we can rewrite the forward backward system (8.18) in the condensed manner:

dX; = =Yidt + 0d B, Xo = Xo
(8.20)

aY, = =k (1= kW) Xdt + ZedB,,  Yr =0.

The system being linear, it is not unreasonable to expect that the solution of the backward
equation be a linear function of the solution of the forward equation. There are sound
reasons for that, but we shall not give them because they are beyond the scope of these
lectures. Still, based on this intuition, we make the ansatz Y; = n; X; for a differentiable,
N x N matrix valued (deterministic) function ¢ — 17, which we try to determine. Again,

for the sake of notation we set A = x? (I — %W) so that

dY, = —AX,dt + Z,dB,, (8.21)

and computing dY; from the ansatz and using the expression of dX; given by the forward
equation we get:

d}/t = ﬁtXtdt + ntht
= (1y — n?) X, dt + on,dB,

and identifying with the expression (8.21)) we get
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. 2 _ —A
Zt = O'T]t.

The first relation is a matrix Riccati equation. If we assume that the largest eigenvalue of W
is not greater than /V, in which case A > 0 in the sense of inequality between matrices, then
given the terminal condition n = 0, this Riccati equation admits a unique (non-exploding)
solution which is given explicitly by:

m = VA(EVAT _ 1) (e2VAT-D 4 )7 (8.24)

which can also be expressed as
m = VA (I —2(e2VAT | I)_l). (8.25)

The fact that the matrix valued function 7, defined by either of these formulas is the solution
of the Riccati equation in (8.23) can be checked by inspection. Using this expression for 7,
in the ansatz and the dynamics of the state as given in the first equation of (8:20), we see
that

dXt = _ntXtdt + O'dBt

which shows that in equilibrium, at least when the initial condition is Gaussian, the state
process is Gaussian and the equilibrium strategy profile is given by

Gy = _ntXt

which is also Gaussian whenever X is. In fact, if for each s € [0, T'], we denote by U (¢, s)
the solution of the ordinary (matrix) differential equation

%U(t,s) = —nU(t,s), (8.26)

over the interval [s, T'] with the initial condition U (s, s) = I, then we have:
¢
X, =U(t0)Xo + 0 J Ult, s)dB, (8.27)
0

from which one easily computes the covariance of the process (X;)o<i<T-
S

cov(X,, X;) = U(t,0)cov(Xo)U(t, 0) + UQJ trace[U (s, u)U (t, u)1]du
0

whenever 0 < s < t < T. We use the exponent T to denote the transpose of a matrix. Note
that the first term is not present when the initial condition X, is deterministic.

8.3.3 A Glance at the Convergence of Large Games when N — o0

The above calculation shows the important role played by the matrix A = x2(I — N~1W).
As we are about to see, in order for this quantity not to blow up in the limit N — oo,



we need to rescale the interaction part of the cost by choosing x = /N, in which case
A=NI-W.

Moreover, in order to analyze the limit of the solution of the network game considered
above as the size of the game increases without bound, we rename the important quantities
used above by introducing the dependence upon the number NNV of players. In particular:

AN = NIV — WV, and gl = VAN (2VATT—t) _ [Ny (e2VAT(T=1) 4 [Ny=1

where we denote by I the N x N identity matrix. The spaces to which these matrices
belong, namely R > change with IV, so for us to be able to control convergence when
N — o0, we embed all these matrices into a common space. We choose this common
space to be the Hilbert space L2 (I x I,Brx1,A\1 ® A1) of (equivalence classes of) square
integrable functions on the unit square I x I. In order to shorten the notation, we shall
often denote this space by L?(I x I). A generic element, say w, of this Hilbert space is a
function I x I 3 (x,y) — w(x,y) € R uniquely defined for A\; almost every x € I and
y € I, and its value w(x, y) can be interpreted as the strength of the interaction between x
and y if the latter are understood as players in a game with a continuum of players. In graph
theory, these functions w are often called graphons. Also, to each graphon w we associate
an operator W on L?(I, By, \;) defined by:

(W f](x) = j wle ) f()dy, e L(1Br A (8.28)

and because this operator has a square integrable kernel, it is a Hilbert-Schmidt operator.
Recall the discussion of Section 4.2] of Chapter [4]

So associated to the matrix AV defined above, we introduce the piecewise constant
graphon A" which is equal to Ag = Né;j — wg on the plaquette I; x I;. Recall that for
each integer N > 1, we denote by P(N) = {I},--- | I} the partition of [0, 1) comprising
the N equal length intervals I; = [(j — 1)N,j/N) for j = 1,--- , N. We often use the
dyadic partitions corresponding to N = 2" for some integer n = 0.

At this stage, we have a sequence (A" ) y>1 of (piecewise constant) elements of L?(I x
I). It makes sense to study the convergence of this sequence in this space. In terms of
the corresponding sequence of operators (A™) - obtained through the definition (3.28)),
convergence of the kernels AN corresponds to the convergence of the operators AV in
the Hilbert-Schmidt norm, which is stronger than the convergence in the operator norm.
Unfortunately, even the convergence in the sense of the operator norm is too much to expect
in many cases. Indeed, as seen in Lemma[0.3] strong convergence is too often the best one
can expect.

146



9

Stochastic Differential Graphon Games

In this chapter, we introduce a new class of dynamic stochastic differential games with a
continuum of players. Our goal is to generalize the section of graphon games contained in
Chapter [ to the dynamic setting of controlled states given by the solutions of stochastic
differential equations.

9.1 GAMES WITH A CONTINUUM OF PLAYERS

In hope to identify, and possibly analyze, game models which could appear as limits when
N — oo of network games of the type studied in the previous chapter, we introduce a
model with a continuum of players with interactions given by a graphon.

9.1.1 Measure Theoretic Background

Let I = [0,1], By be its Borel o-field and A; the Lebesgue measure on I. We should think
of each = € I as a player in the game we are about to introduce.

Next for technical reasons which will become clear later on, we consider a rich Fubini
extension (I x 2,7 x| F, A X P) as we did in Chapter E] for the static case. Z is a o-
field containing B;. It is not countably generated. A is a probability measure extending
the Lebesgue measure A;. So the measure space (I, B, \) is an extension of the standard
Lebesgue space (I, Br, A\1). (12, F,P) is a probability space which we should think of as
the sample space. F is not countably generated either, so the classical Lebesgue spaces
L?(£2, F,P) will not be separable. The o-field Z [x] F contains the product o-field Z ® F
and the probability measure AXIP is an extension of the product measure AQP. See Chapter
?? for more on rich Fubini extensions.

The theory of Fubini extensions guarantees the existence of a (measurable) essentially
pairwise independent process (£, )zer on (2, F,P) with values in the Polish space £ =
C([0,T7) such that for each x € I, the distribution of the random variable &, is the Wiener
measure p on F equipped with the Borel o-field By of the topology defined by the sup-
norm. For each t € [0,T] we denote by C; the coordinate map F 35 w — Ci(w) = w(t).
With this definition (C})o<:<7 is a process of Brownian motion on the probability space
(E,Bg, o) and as a result, for each 2z € I the process B* = (B¥)o<i<7 18 @ also a
process of Brownian motion on the probability space ({2, F,P). Moreover, the processes
(B™) e are essentially pairwise independent in the sense that for A-almost every x € I the
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processes B” is independent of the process BY for A-almost every y € I. We should think
of dBY as the idiosyncratic shocks affecting the state of player x at time ¢.

For each x € I, we denote by 7 = 0{B?; 0 < s < ¢t} the complete o-field generated
by the random variables BY for 0 < s < t. Now we define an admissible strategy profile
a = (af)(z,t)erx[o,r] as a measurable and square integrable process on (I x £2,B; ®
F, A\r®P) with values in L?([0, T], dt) which is distributed in the sense that for each z € I,
the strategy a® = (af )o<t<r Of player « € I is adapted to the filtration F* = (FJ)o<<r
generated by the Wiener process B* = (Bf);>0.

Let w be a graphon whose associated operator on L?(I, Br, A7) we denote by W. This
operator can be extended to the Hilbert space L?(I,Z, \) since for f € L?(I,Z,\) and
for A-almost every = € I, the integral §, w(z,y)f(y)\(dy) makes sense. In fact, even
though f € L?(I,Z,)\) may not be measurable with respect to B;, the function I 5 x
(W f](z) = §; w(z,y) f(y)A(dy) is as can be seen using the eigenfunction expansion of
the operator W in L?(I, By, Ar). Indeed:

[WN@=ZMW@LWMMMW)

k=1

which shows the desired measurability since all the eigenfunctions ¢y, are Br-measurable.
Note that the infinite series in the right hand side converges in L?(I)-sense because the

1/2
leelzy = LIS, er@) f@AAy) < [§, 1£@)2Ady)]"%, and the Xy, are square
summable.

Even though we are not able at this stage to define rigorously the dynamics of the states
of all the players simultaneously, we denote for each player x € I, their state at time ¢ by
X7 and we assume that their overall expected cost is given by a quantity of the form:

T
Jw((at)ogth7a) = ]E[J ft, X7, o, Zt""x)dt] (CAY)
0

when player = uses the strategy (au)o<i<r and all the other players use the admissible
strategy profile & = () (z,+)erx[0,7]- In so doing, the ensemble of players creates at each
time t € [0, T], an aggregate state:

z”:fw@mwmw> ©.2)
I

which represents the state of the system faced by player x € I. Note that if the graphon is
not constant, this aggregate is likely to depend upon x, breaking the symmetry of anony-
mous and mean field games. Moreover, its definition as an integral requires the measura-
bility of the map y — X} which is the reason we are setting up the game model with the
help of Fubini extensions.

The definition X[ of the state of player = at time ¢, as well as the definition of its
dynamics, will be chosen on a case by case basis. In any case, for the sake of notation
we shall often denote the aggregate (9.2) by [W X;](z), implicitly using the extension of
the operator W to L?(I,Z,)). Also, we need to keep in mind the fact that the function
y — X} depends upon the choice of the admissible strategy profile c.
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9.1.2 A First Class of Models

In this subsection, we assume that b : A x R — R is a function which is Lipschitz in both
variable, with a Lipschitz constant in the second variable being strictly smaller than 1. To
be specific, we assume that there exist positive constants ¢, and c, such that ¢, < 1 and

Ib(a, 2) — b/, 2)|* < cala— ' |? + c.|z — 2|2, (a,2),(c,2)e AxR. (9.3)

Our goal is to define the state of the system as a solution of a system of a continuum of
coupled stochastic differential equations of the form

AXP = b(a?, Z&")dt + dBF,  t=0,z¢el. (9.4)

The meaning of this differential form is better expressed in integral form:
t

XP =X+ f b(a¥, Z%%)ds + BY,  t>=0,z€l.
0

We assume that the initial condition is square integrable in the sense that (X{),er €
L?(2 x I, F®Z,P® \) and that the random variables X¢ are essentially pairwise inde-
pendent. If we can actually construct such a state, we should have:
t
E[X?] = E[X{] + J E[b(a%, Z3")]ds, t=0,xel, 9.5
0

The following notation will become handy in the discussion below. For each z( € R,
function ¢t — wu; € A, and real valued functions z and £ of ¢, t — z; and ¢t — &;, we define
the function t — X . - ¢(t) by

t
Koy () = 0 + f bas, 25)ds + £(1). 9.6)
0

Notice that E[X X2 a0, 2%% Be (t)] is exactly the expectation of the state X as considered
in (9.3).
Lemma 9.1 [f the Hilbert-Schmidt norm of the graphon operator satisfies

. T* W3 <2, 9.7)

then for any admissible strategy profile o, there exists a unique element 2 x [0,T] x I 3
(w,t,x) — Z;" (w) in L*(2 x [0, T] x I, F ® Bo, 1) ® Br,P® Ajo, 1] ® A1) satisfying:

Zyt = Lw(xay)XXg,a?’,Z.‘””,By(t))‘(dy) ©-8)

for P&Ajo, m®Ar almost every (w, t,x) € 2x[0,T]x I, showing existence and uniqueness
of a state process satisfying (9-4) where the aggregate Z;" is given by (9.2).
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Proof: Given «, we define the map U from L?(£2 x [0, T] x I, F®Bro,r @ Br,P®Ajo,r ® A1)
which we denote by L?(£2 x [0,T] x I) throughout the proof, into itself by:

[V=1(0:2) = | 0@9) X0, (D)

and we prove that U is a strict contraction of L?(§2 x [0,T] x I). This will prove the claim of the
lemma. Note that by definition of a Fubini extension, the integral with respect to A(dy) of

Xgat st (§) = X0 + [ Ba2(0), (o, + B

in F-measurable in w € {2 and since it is continuous in ¢, it is jointly measurable with respect to
F ® B;. Consequently, using again the eigenfunction expansion of the graphon function w as we did
earlier, we see that [Uz](w, t, ) as defined above is F ® Bjo,r] ® Br-jointly measurable.

As usual, we shall try not to write the dependence upon the variable w € {2 whenever we can.
We first prove that Uz € L*(§2 x [0,T] x I) whenever z does.

]ELT L[Uz](t,x)Q dtdzx

T 2
[ [|] 0 Xxg0r w0 ® M) dtds
0 I'J1

E LT L (L w(z, y)2dy> (L‘Xﬁ{ + f: b(a?, 2(s,y))ds + BY 2A(dy))dtdm

T t 2
<cpwize | (| yray || b(az,z<s,y>>ds\ dy + | 1B )de
I

< TIEJ XYy + 2T°b(0,0) JU (o] + ¢[2(s, )P )dsdy + L 7°)

which is finite because o and z are in L*(2 x [0,T] x I). We now prove the strict contraction
property. Let z and Z be elements of L?(§2 x [0, 7] x I). Then:

HUZ—UZHL2 2x[0,T]x1I)

2
= EJ J‘J T y Xxy a?,z(-,y), B’/( )_Xxg,a?’,i(»,y),B_y (t)) )\(dy)’ dtdx

J f j 2,)'dy ﬂj (a3, 2(s,)) — blag, 2(s,y) )ds‘ dy)dtdm

<\|WH§EJ f f (b(a?, 2(s,)) — b(a¥, 3(s,)))*ds dy di
0 IJ0
T° 2 T - 2
< e WEE [ [ 126s,9) — 5(s,)Pdsdy
0 I

which conclude the proof since .72 |[W||3 < 2 by assumption. ©

Our goal is now to prove that the aggregate constructed above is in fact deterministic. In
preparation, we state without proof the following result which can be obtained with exactly
the same proof as above.
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Lemma 9.2 Under assumption (9.7), for any admissible strategy profile v, there exists a
unique element [0, T] x I 3 (t,z) — ¢*(t) in L?([0,T] x I, Bjo,r1 ® Br, Ao, ® A1)
satisfying:

qm(t) = w(x’y)E[XXg,a.y,qy,By (t)]dy 9.9)

~

~—

for Ao, 11 ® Ar almost every (t,x) € [0,T] x I. We shall denote by q**(t).

Proposition 9.3 Under assumption (9.7), for each admissible strategy profile o, the ag-
gregate Z;"" is deterministic.

Proof: Because of our definition of admissibility of a strategy profile, because the initial condi-
tions are assumed to be pairwise essentially independent, the fact that ¢®®(¢) is determinist implies
that for each fixed ¢, the random variables X X¥,0¥ g, B (t) are essentially pairwise independent.
Consequently, the exact law of large numbers implies that:

qa,l‘(t) = J w(m,y)E[XXé!’a:y’qa,y’By (t):ldy

I (9.10)

= J w(@,y)Xxy 0¥ gov,5v (H)A(dY)
I

which shows that ¢®* (¢) satisfies the identity (9.8), and by uniqueness of the fixed point constructed
in the proof of Lemma we conclude that ¢®*(t) = Z;" proving that the latter is deterministic.

]

9.1.3 A Model Inspired by the Previous Finite Player Network Game

As a warm-up, we consider a natural generalization of the finite player network game stud-
ied earlier to the set-up of games with a continuum of players. We assume that for each
player x € I, the dynamics of their state are given by the It6 process

dX} = of dt + odBY, (9.11)

where we assume that o = (af (. p)erx[o,7] 1S an admissible strategy profile. We also
assume that the initial conditions are given by a process X o = (X§)zes for which I x 2 3
(r,w) — X¥(w) € L?>(2 x I, F ® Br,P® \r). This model is clearly a particular case
of what was discussed in the previous subsection, as one can see by choosing b(«, 2) = «
which satisfies assumption (9.3) with ¢, = 1 and ¢, = 0. Accordingly, Proposition [9.3|
says that for each admissible strategy profile, the state aggregates Z," are deterministic.
This is clear in the present situation since:

t
Zo" = (WX () + J f w(z,y)E[ad] dyds (9.12)
0JI

Wishful Thinking: a Formal Computation

Let us assume that in equilibrium, the state trajectories are given by the solutions of a
continuum of stochastic differential equations:
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dXP = —[mX;]°dt + dBY,  wel, 9.13)

for some continuous function [0, 7] 3 ¢ +— 7, in the space of bounded operators on L?(I).
Denoting by (U (¢, s))o<s<t<7 the fundamental solution of the equation fo = —mif; as
before, and assuming that these operators have kernels, one should expect that the solution
of (9:13) be given by the formula:

-Xf==HKLOXYJ$+lL[U@,$dBJI

where the stochastic integral should be given by

Jt[U(t s)dB,]* J f Ul(t, s)(x,y)dBYA\(dy)

0

where we use the notation U(t, s)(z,y) for the kernel of the bounded operator U(t, s),
assuming that such a kernel exists. Assuming that these formal calculations can be justified,
for 0 < s <t < T one has

cov(X;PXY)

—]E JJ U(t,u)(z, 2')dBE A(da') LLU Ny, y')dBY, A(dy' )du )]
LJ (t,u)(z, 2')dB \dz')d L LU y’)dijﬁA(dy’)du’)]

J f U, u) (@, 2')U (s, o) (y, v/ JE[ABE dBY N (da' )\ (dy)dudu

- E|(

-1, L

= JOS L U(t,u)(z, 2" )U(s,u)(y, 2" )\ (dz")du
),

U(t,u)(z,2")U(s,u)(y,z")dz' du

‘fwwmwMMuwm
9.14)

where we used successively, the independence of the increments of the Brownian motions,
the essential pairwise independence of the Brownian motions, the fact that the kernels of
the operators U are 5; measurable so we can use dz’ instead of A(dx’), and finally the
definition of the transpose and the product of kernel operators.

9.2 CONVERGENCE AND APPROXIMATION ANALYSES

In this section, instead of starting from finite systems and analyzing their possible limits
when their sizes grow without bound, we start from an infinite system, based on a model
for the interactions between a continuum of players, and we construct finite systems which
converge in a certain sense toward the infinite system we started from.
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9.2.1 Approximations by Finite Random Graphs
9.2.2 Deterministic Approximation Analysis

As usual, we denote by I = [0, 1] the unit interval, B; its Borel o-field and by A; the

Lebesgue measure. To shorten the notations, we shall use L?(I) for L?(I,B;, \r) and
L2(I X I) for L2(I X I,B[@B[,)\[ @)\[)

Function Approximation Preliminaries

For each integer N > 1 we denote by P(V) = {I;,--- , Iy} the partition of [0, 1) given
by the N equal length intervals I; = [(j — 1)N,j/N) forj = 1,---, N, and by L")
the subspace of L?(I) of the (equivalent classes of) functions which are constant over the
intervals I;. We emphasize the fact that the vector space L) is isometric (up to the nor-
malizing scaling factor v/N) to the Euclidean space R . Indeed, the following calculation
shows that this isometry 7' is given by the map from L("¥) onto RV which associates to a
function f taking the values f; on the intervals I;, the element of R¥ with j-th component
f;. If the functions f and g in L) take the values f; and g; on the intervals I;, then:

N N
1 1 N N
< f,9>pmn= ;1 L f(z)g(z)dx = N;fjgj =5 <7 f,mg >Ry . (915)

Here and in the following, we denote by < f, g > the inner product of f and g in the
space L, which we skip in the case of L?(I).

We now identify the orthogonal projection IT N oof L?(I) onto the subspace LN 1f
feL?(I)and N > 1, we denote by ™V (f) the element of R™V defined by

N (f); = NJ fly)dy,  j=1,---,N.
I;

The entries of this vector are the averages of the function f over the intervals I; of the
partition. For each N > 1 and f € L?(I) we denote by f e L?(I, By, \;) the piecewise
constant function on I which is equal to u™¥(f); on I; for j = 1,---, N. This function
has a nice probabilistic interpretation. Indeed, if for each N > 1 we denote by BY the
sub o-field of B; generated by the partition P(™), then f7 is nothing but the conditional
expectation of f with respect to BY, in notation

fN =EM[fIBT]. (9.16)

Clearly, fN e L) and in fact, fN =1V f- Indeed, for every f € L2 (I) and for every
@ € LWV if we denote by ; the value of ¢ on I;, we have:
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N N
<fo>= 2| f@etds= Y e | S

Sl
=2, it (£ 9.17)

Similarly, if w € L?(I x I) is symmetric in the sense that w(z,y) = w(y, ) for almost
every x and y in I, and if N > 1, we denote by w™ € RV*Y the N x N symmetric matrix
defined by its entries wf}/ given by:

wf}r:N2J\IJ\IU)(I,y)dIdy, 7’7.]:17 7N7

and by w” the piecewise constant function in L?(I x I) which is equal to wf}’ over the
square I; x I;. Again, w! can be viewed as a conditional expectation:
™ = BN [w]BR 4]. (9.18)

where BY, ; is the o-field generated by the partition of I x I into the plaquettes I; x I; for
iaj = 1u 7N'

Lemma 9.4 If f € L>(I) and w € L*(I x I), then

lim N = lim @ = w
Naoof 5, N

almost surely and in the L?-sense for the respective L? spaces.

Proof: For the sake of simplicity, we prove the result in the case of the dyadic subsequence N = 2"
with a simple martingale argument. Notice that for each n > 0, B?n c B%Ml which shows that
(an)n>0 is a martingale closed by f, hence the convergence almost sure and in L?. The argument
is exactly the same for w. ©

Piecewise Constant Graphons and Associated Operators

If w e L?(I x I), we denote by W the operator with kernel w, i.e. the operator defined on
L?(I) by:
W@ = | wai) s eI,

The operator W is not only a bounded operator, but because it has a square integrable
kernel, it is a Hilbert-Schmidt operator. Its Hilbert-Schmidt norm |W |5 is given by

W2 = f f w(z, y)>dudy.
IxI

In fact there exists an complete orthonormal system (CONS) {¢x;k > 1} of L?(I) of
eigenfunctions of W. Indeed there exist a square summable sequence of real numbers
{Ag; k = 1} satisfying:
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W(pk = )\ngk, k = 1.
The square of the Hilbert-Schmidt norm also equals the sum of the squares of the eigenval-

ues, So
W3 = > A%

k=1

Given an N x N symmetric matrix 7, we denote by 77V the function on I x I which is
equal to 7;; over the square I; x I;, and by n” the corresponding kernel operator on L?(I)
defined by:

0™ f](x) = f W@y f)dy,  wel
I

Notice that if f € L) is equal to fj over the interval I; for j = 1,.-- , N, thenif z € I;,
J 1 & 1
[N fl(2) = ), J N (@) fW)dy = < > miifi = (N Pl
j=1"1 N3 N

In particular, the function nN f is constant over the intervals I;, so it is an element of LW ),
showing that the operator " leaves the space L") invariant. Moreover, the vector of its
values, namely 7w~ (n™ f) is given up to the factor 1/N by the product of the original
matrix 7 by the vector 7wV f. To be specific:

1
NV f = S f) (9.19)

for f € LN, Notice also that the operator ™ associated with the matrix 7 not only leaves
invariant the subspace L(™), but it is identically equal to 0 on the orthogonal complement
L)L Indeed, if fe L)L then

" fl(x) = j (@, 9) f)dy =<0 (@), f >=0

because for each x € I, the function I 3 y > n™¥(z,y) is constant over the intervals I s
hence belongs to L(™), implying that the inner product is 0 since f is orthogonal to all the

functions of L(™). So since I — ITY is the orthogonal projection of L?(I) onto L™+, we
see that for every f € L%(I),
0™ f =N (@Y )+ (- IV f) = o™ (I f)
and applying (9.20) to IT" f we get
1
VNNV f = Nn(ﬂ'NHN f) (9.20)

for f € L2(I). So, using the facts that VN ITY = n™ and 7N ITY = N we get the
formula:

1
" = = (@) put. (9.21)
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The final remark on this topic is contained in the following formula. For each bounded
continuous function « from R into R such that 4(0) = 0, we have the following equality
between bounded operators on L?([):

Ny = L)), (9.22)

The easiest way to prove this equality is to start from the eigenvalues A\; < Ay < --- < Ay

of the symmetric matrix 7 and the corresponding eigenvectors f1, fo,--- , fy forming an
orthonormal basis of R, By definition, the matrix u(n) is diagonalized in the same or-
thonormal basis {f1, f2, -, fn} and its eigenvalues are u(A1), u(A2),- - ,u(Ay). For-

mula (9:21)) implies that the eigenvalues of the operator n¥ are 0 and A\; < Ay < -+ < Ay,
an orthonormal basis of eigenvectors being given by any orthonormal basis of L(V)+
say {gx}r>1 (all the gy associated with the eigenvalue 0), and the orthonormal ba-
sis {VN(mN) L1, VN(#mV) " o, WV N(®N) 1 f} of LY, Recall (0.15). Conse-
quently, because of the way functions of a bounded symmetric (self-adjoint) operator are
defined, the eigenvalues of the operator u(n”) are 0 (recall that u(0) = 0 by assumption)
and u(\1),u(A2), -+ ,u(An), with the same orthonormal basis of functions. Using again
formula (9:21), we see that the operator described this way must be + (™) u(n)u,

proving formula (9.22).

Stability Results

The nature and the statements of the following approximation results for operators on L2 (1)
are motivated by the analysis of the finite player network game introduced in the previous
chapter.

Lemma 9.5 If w € L?>(I x I), and if for every integer N > 1 we denote by IV the
operator whose kernel is given by the piecewise constant function equal to d;; over the
plaquette I; x I; of the partition of I x I determined by the partition PW) of I, and wh
the operator associated with the piecewise constant function w" defined in (9.18), then the
operator NIV converges strongly towards the identity operator 1 of L (I) and the operator
wh converges strongly towards the operator W associated with the graphon w, i.e. for

every f € L*(I)
lim [NIV]f = f,  and im wNf=wr.
—00

N—w

Proof: If f e L*(I), thenif x € I;,

[(NIY = W) f](2) = )] L [NI™ (2, y) = w™ (z,9)]f (y)dy

J=1%4

N
= >[N — wﬁ]fl fy)dy (9.23)
j=1 5

N L f(y)dy — N? i L L w(e )do'dy’ | fw)dy

1
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the first term converging toward f in L2(I). As for the second term, we rewrite it as:
N
- Nf (J W(w',y')f(y')dy')dﬂc' -NY. J J w(:r/7y')[Nf fly)dy - f(y')]dx'dy/
1, VI sodnJi I

_ NL (W f1(a")da’ — NL_ (i

i j=1

I; w(@,y) [NJ; f(y)dy — f(y/)]dy/>da:/.

(9.24)

The first term converges in L*(I) toward the desired function W f, so it remains to show that the
second term converges in L?(I) toward 0. But using the notation (9.16), we can rewrite the negative
of this second term as

V(B we ol s = [ v = i

i j=1

Notice that the right hand side is the value at x € I, of the piecewise constant function equal to the
average of the function W (f~ — f) over each interval of the partition PP By Jensen’s inequality
the L2 (I) - norm of this function is less than or equal to the L?(I) - norm of the function W (f~ — f)
which goes to 0 because of the result of Lemma[9.4]

In fact the convergence of the second term in (9:23) can be argued with a high level argument.
Indeed, Lemma says that the kernels of the operators W converge toward the kernel of the
operator W in L?(I x I), which implies the convergence of the operators in the Hilbert-Schmidt
norm, hence in the operator norm, hence in the sense of the strong convergence. ©

The following result is tailored to the analysis of the finite player network game inves-
tigated earlier.

Lemma 9.6 Let (AN)n=1 be a sequence of bounded self-adjoint operators on L*(I)
which satisfy the following conditions:

(i) the spectra of all the AN are contained in [0, c| for some ¢ > 0;

(ii) AN converges strongly toward a bounded self-adjoint operator A.
So if for each N = 1 and t € (0,T) we define:

ni\/ _ m(e2vAN(T—t) _ I)(e2vAN(T—t) + I)—l

then we have
lim nY =n, strongly
N—w

where 1, = VA (VAT _ [)(e2VAT-1) 4 )1,

Proof: This is a direct consequence of the fact that for ¢ € (0,7) fixed, the function o —
Va(e?VeT=t _1)(e2V(T=t 1 1)~ is continuous and bounded on [0, ¢]. ©

Lemma 9.7 Let (™) =1 be a sequence of continuous functions from [0, T'] into the space
of bounded self-adjoint operators on L?(I) which satisfy the following conditions:

(i) for each t € (0,T) the operator nY converges strongly toward a bounded self-
adjoint operator n,;

(i) the function (0,T) 3 t — m, is strongly continuous.
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Then for each N = 1 and s,t € (0,T) the fundamental solution (U™ (t, s))o<s<t<T Of the

equation

d
SUN () =M UN (1)t

with the initial condition UN (s, s) = 1, converges strongly as N — oo toward he funda-
mental solution (U (t, s))o<s<t<T Of the equation

d
%U(t, 8) = T]tU(ta 3) t=s

with the same initial condition U(s,s) =1

Proof: For each t € [0, T, the operators 7)) converge strongly toward 1), , both being given by for-
mula (8:24) applied to AY and A respectively. The uniform boundedness principle (see for example
[32, Theorem II1.9] or [39, Theorem 4.22]) implies that

sup sup |n) | <o and  sup |n,| < . (9.25)
0<t<T N=1 0<t<T

As a result, the fundamental solutions of the operator linear differential equation (8:26) are also

uniformly bounded in norm. Indeed:

T N
sup sup [UN(t,s)| < sup sup elo Imeldt o (9.26)
0<s<t<T N=1 0<s<t<T N=0

Next we prove that for 0 < s < t < T fixed, U™ (¢, s) converges strongly toward U (t, s). Indeed, if
fe L*(I)is fixed, UN (t,s) f and U(t, s) f are the solutions of the ordinary differential equations

ft]v = _nivftN7 and fi = _ntft7

over the interval t € [s,T'] with the same initial conditions f¥ = f; = f. Notice that

fo=—nfo=-nfo+ ) —nfe
so that .
fo= £ +f UN (& )Y = m,)fu du.

For each fixed u € [s,t], the strong convergence of )Y toward n,, and the uniform bound (9:26)
imply that limy o |UN (t,u)[nY —n,]fu|| = 0. Moreover, the uniform bounds ([9.23) and (9.26)
make it possible to use Lebesgue’s dominated convergence theorem to conclude that £ converges
toward f; in L?(I). This proves that for each 0 < s < t < T, U™ (¢, s) converges strongly toward
U(t,s). o

Examples

e Constant graphon w(z,y) = p for some p € (0, 1). In this case, for each N > 1,
w{}f = p which says that each player interacts with all the other players equally, the
aggregate being, up to the factor p, the sample average of all the states. We recover the
Mean Field Game models.
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e Simple threshold graphon w(z,y) = 1,,<:. In this case,

1 ifi+j<N
w =405 fN+1<i+j<N+2
ifi+j>N+2

so a given player ¢ € [ N] will have the same unit strength interaction with all the players
je{l,---, N —i}, interaction of strength 0.5 with players j € {N —i+ 1, N A (N —
i + 2)} and no interaction with the players j € {N A (N — i + 3), N}. Recall that the
notation x A y stands for the minimum of x and y.

e Min-max graphon w(z,y) = = A y(1 — = v y). Recall that the notation x v y stands
for the maximum of x and y. In this case,

F=Ei-HIN=-(G-3) ifl<i<j-1
*—it1/3 B3 —(3/2)i*+i—-1/4 . .
i ~NT o — N7 ifte =7

-3 (N=(i-3) ifl<j<i-1

so the interaction of a given player ¢ € [IN] with player j decreases when the label j of
the other player gets further from the label :.

e Power law graphon w(z,y) = (z A y(1 — z v y))zy)? for some v € (0, dir0o/3).
While this graphon function is not bounded, it is still square integrable. In this case,

1
N _ A=y _ (s =11y (5 11—
Wl = gy T G DT =) )
showing that the strength of the interaction of a given player ¢ € [N] with player j
decreases when the label j of the other increases.

9.2.3 Back to the Stochastic Differential Graphon Game

Recall that we started from a graphon w to underpin the interaction between the players
and we proved that for each admissible strategy profile o = (af ) e I,te[0,T]> the aggregate
states Z, " felt by the individual players were deterministic.

Notion of Nash Equilibrium

Definition 9.8 An admissible strategy profile a = (&) e 1,te[0,7] s said to be a Nash
equilibrium for the game if there exists Z = (Z7)ger 1efo,1] € L2(I x [0,TY)) such that
(i) for almost every x € 1

T
(af)o<t<r € arg  inf E[J (1|0zt|2 + (X — Zf)Q)th]
Ott)ogth 0 2
under the constraint dX; = audt + dBy for some Brownian motion B = (By)>o where
the drift (au)o<i<T is adapted to the filtration of this Brownian motion;
(ii) Z = (Z})yer te[o,1] IS the deterministic aggregate associated with o = (f ) e te[0,7]
via Proposition[9.3]
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Bullet point (i) in the statement of the definition states the optimal control problem
(almost every) each player x € I has to solve to find their best response to the aggregate
state Z. If one uses Pontryagin stochastic maximum principle to solve this problem we
end up having to solve the following forward-backward system of stochastic differential
equations:

dXF = —Y#dt+ dB?
dYP = —(XF — Z¥)dt + Z,dB¥.

Unfortunately, this forward-backward system cannot be attacked x by x because of the
coupling contained in the candidate Z for the actual state aggregate. Including the fixed
point element contained in the second bullet point of the above definition implies that this
Z (not to be confused with the Zf integrand processes) should be the actual aggregate in
equilibrium. So if we combine all these coupled forward backward systems in one, one
obtain (at least formally) the infinite dimensional forward backward system

dY;, = —AX;dt+ ZdB".

{dXt' — —Y;dt + dB,

where A is the operator I — W and Z, is now an operator since it should depend upon
couples (z,y) of players. This coupled forward backward system being linear, it can be
solved by first making an ansatz Y; = m, X, for some deterministic function ¢ — m, with
values in the space of bounded operators on L?(I), and differentiating the ansatz and using
the differential given by the above system helps us identify 7, as the solution of the Riccati
equation

i —n; = —A

whose solution is given by 1, = VA(e2VAT =) _ T)(e2VAT=1) 4 T)~1, Consquently,
we can conclude that the dynamics of the states in equilibrium are given by the Gaussian
process whose covariance was computed in the subsection touted as Wishful Thinking, and
that this equilibrium is indeed the limit as N — o0 of the Gaussian processes giving the
states evolutions for the equilibria of the finite player network games which we constructed
for the purpose of approximation.

9.3 WHERE DO WE GO FROM HERE?

As a conclusion to this chapter, I list informally, in no particular order, a set of questions
raised by the limitations of the results and proofs given above, and a few desirable exten-
sions which could be approachable with the tools developed presented in these lectures.

e For the very few models for which we can compute Nash equilibria, could we also solve
the central planner optimization problem and as a result, estimate the price of anarchy
for these large stochastic networks.

e We chose to use a version of the Pontryagin stochastic maximum principle to solve
the network game model analyzed in this chapter. A more analytic approach would
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be based on the use of the dynamic programming principle and the solution of a sys-
tem of Hamilton-Jacobi-Bellman equations coupled with a Kolmogorov-Fokker-Planck
equation. Could such an approach be implemented to control the limits of finite player
network games and recover the systems touted by Peter Caines and his collaborators in
a series of recent notes and conference proceedings? See for example [14]].

e The analysis of static graphon games lead to expressions for Nash equilibria involv-
ing geometric properties of the underlying graph structure, such as centrality indexes
for example. The form of the equilibrium strategy profiles we found in the models of
dynamic stochastic graphon games we managed to solve in this chapter involved the
operator I — W in a form which was not explicit enough to identify the role of the
geometry of the graph in the expression of the player strategies. Making this connec-
tion explicit will be helpful to understand how the nature of the graph influences the
equilibria.

e We approximated the limiting continuum graph structure by deterministic analogs
based on piecewise constant graphons, and the corresponding finite player games were
based on these approximations. Graphons are traditionally introduced as limits of ran-
dom graphs. Some of these random graphs are obtained by sampling methods, the most
popular ones being described in Chapter 4] Is it possible to approach the analysis of
network games with a continuum of players as limits of finite player games interact-
ing through these random graph approximations? How different would the analysis be?
Could we get a better insight using these types of approximations?

e Graphons are limits of dense graphs. In game models underpinned by such graphs, each
player interacts with a significant proportion of the other players. Remember that in a
mean field game, each player interacts with all the players, even if only through average
quantities like means, ..... . Mathematical structures have been introduced to capture the
limits of sparse random graphs (e.g. bounded degree graphs, Erdos-Renyi graphs with
small connection probabilities, graphs with power law degree, .... ) whose limits would
naturally lead to the zero graphon. Could we use these to analyze the limits of network
games with sparse interactions?
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of scalar type, [I3§]
mean field game, 9]
mean field interactions,[9]
measurable cylinder, [83]
min-max graphon,
mixed equilibrium , [96]
mixed strategies, [§]
mixed strategy, §]
mixed strategy profile, [§]

Nash
equilibrium, [T49]
Nash equilibrium, ]
in mixed strategies, [§]
sub-game perfect, [TT9]
Nash existence theorem, [§]

one stage deviation principle, [123]
open loop
equilibrium, [T50]
open loop strategy, [120]
operator
bounded, 57
compact, 58]
Hilbert-Schmidt, 58]
invertible, [57]
optimality, [T49]
outer measure, [86]

Pareto optimality, [3]
particle

approximation, [T42]
path,[12]
Poisson process, [86]
Polish space, [8T] [T33]
potential function, [IT]
potential game, [TT]
power law graphon, [T79]
preference, [54]
price of anarchy, ]
price of stability, [3]
prisoner dilemma, [120]
product o-field, [82]
Prokhorov distance , 9]
Prokhorov’s theorem, 9]
propagation of chaos, [142]
pure strategy, [3]
push-forward, [53]
push-forward image, [I39]

range, [21]

reduced Hamiltonian, [152]

repeated game, [T21]
rich Fubini extension,

running

cost, [T4g]



Schauder’s fixed point theorem, |§|
selection, 22} 23]
signal, O8]

Simple threshold graphon, [T7§]
social cost,

spectrum, [57]
Stackelberg game, [T18]
stochastic

maximum principle, [[54]
strategy

closed loop,

open loop,

profile, [T43]

pure, 3]
strategy profile, 3]
sub-game perfect, [T19] [153]
sug-game, [TT9]

Tarski’s fixed point theorem, [6]
terminal

cost, [T43]
tight, 9]
traffic light dilemma, |[100)

Wasserstein distance, 0] [136]

weak convergence, 8] [133]
weakly measurable, 23]

white noise, [82} [83)]
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