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The Importance of Spread Options

European Call on the difference between two indexes
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Calendar Spread Options

@ Single Commodity at two different times
E{((T2) - (T1) - K)"}
@ Mathematically easier (only one underlier)

European Call on the difference between two indexes

o Calendar Spread
@ Amaranth largest (and fatal) positions

o Shoulder Natural Gas Spread (play on inventories)
o Long March Gas
o Short April Gas

@ Depletion stops in March, injection starts in April
@ Can be fatal: emphwidow maker spread
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Seasonality of Gas Inventory

U.S. Natural Gas Inventories 2005-6
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What Killed Amaranth

Shoulder Month Spread
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More Spread Options

@ Cross Commodity
o Crush Spread: between Soybean and soybean products (meal &
oil)
o Crack Spread:

@ gasoline crack spread between Crude and Unleaded
@ heating oil crack spread between Crude and HO

o Spark spread
St = Fe(t) — HexrFa(t)
H.# Heat Rate
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Synthetic Generation

Present value of profits for future power generation (case of one fuel)

T ~ ~
E{/O D0, t)(Fp(t,7) — H+ Fa(t, ) — K)* dt}

where
o 7 > 0 fixed (small)
@ D(0,t) discount factor to compute present values

o Fp(t,7) (resp. Fg(t, 7)) price at time t of a power (resp. gas)
contract with delivery t + 7

@ H Heat Rate
@ K Operation and Maintenance cost (sometimes denoted O& M)
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Basket of Spread Options

Deterministic discounting (with constant interest rate)
D(t,T)=e """

Interchange expectation and integral

/OT e "E{(Fp(t,7) — H = Fg(t,7) — K)"} dt

Continuous stream of spread options
In Practice

@ Discretize time, say daily

T
Z e_”IE{(l:'p(t, 7') — H * ’Eg(t, T) — ’()+

t=0

@ Bin Daily Production in Buckets Bi’'s (e.9. 5 x 16,2 x 16,7 x 8,
settlement locations, .....).

Ze n(T—t) ZE{ E) (t,7) — H® 4 l:_((;k)(t,r) _ K(k))+}

Basket of Spark Spread Options



Spread Mathematical Challenge

p=e TE{(L(T)— h(T)-K)"}

@ Underlying indexes are spot prices

e Geometric Brownian Motions (K = 0 Margrabe)
o Geometric Ornstein-Uhlembeck (OK for Gas)
o Geometric Ornstein-Uhlembeck with jumps (OK for Power)

@ Underlying indexes are forward/futures prices
o HJM-type models with deterministic coefficients
Problem

finding closed form formula and/or fast/sharp approximation for
E{(a@™ — pe"® — x)"}
for a Gaussian vector (Xi, X2) of N(0, 1) random variables with correlation p.

Sensitivities?
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Easy Case : Exchange Option & Margrabe Formula

p=e "TE{(S:(T) - Si(T))*}

@ Si(T) and Sy(T) log-normal
@ pgiven by a formula a /a Black-Scholes

p= X2¢(d1) — Xq q)(do)

with

_n(xe/xq) 1 _n(x/xq) 1
d1—o’7ﬁ+§0'ﬁ do— 0-\/71 —EO'\/T

and:
xi = S1(0), x2 = S»(0), 0% =02 —2poi02 + 05
@ Deltas are also given by “"closed form formulae”.
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Proof of Margrabe Formula

p= e TE(S(T) — S(T))"} = e TEq { (gﬂ; - 1)+ 81(T)}

@ Q risk-neutral probability measure
@ Define ( Girsanov) P by:

aP| (1, X
(j(@]__T_S1(T)_eXp( 20'1T+0'1W1(T))
@ Under P,

o Wi(t) — oyt and Wa(t)
e S,/S; is geometric Brownian motion under P with volatility

2 2 2
0" =07 —2po102 + 05

o-s0s{ (8

Black-Scholes formula with K = 1, o as above.
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(Classical) Real Option Power Plant Valuation

Real Option Approach
@ Lifetime of the plant [T3, T2]
@ C capacity of the plant (in MWh)
@ H heat rate of the plant (in MMBtu/MWh)
@ P price of power on day ¢
@ G; price of fuel (gas) on day ¢
@ K fixed Operating Costs
@ Value of the Plant (ORACLE)

T2
C> e "E{(P.— HG: — K)*}
t=T,

String of Spark Spread Options
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Beyond Plant Valuation: Credit Enhancement

(Flash Back)

The Calpine - Morgan Stanley Deal
@ Calpine needs to refinance USD 8 MM by November 2004
@ Jan. 2004: Deutsche Bank: no traction on the offering
@ Feb. 2004: The Street thinks Calpine is "heading South”

@ March 2004: Morgan Stanley offers a (complex) structured deal

o A strip of spark spread options on 14 Calpine plants
o A similar bond offering

@ How were the options priced?

o By Morgan Stanley ?
o By Calpine ?
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Calpine Debt
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Calpine Debt with Deutsche Bank Financing

Debt Distribution for Calpine
with Deutsche Bank Refinancing
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Calpine Debt with Morgan Stanley Financing
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A Possible Model

Assume that Calpine owns only one plant
MS guarantees its spark spread will be at least « for M years

Approach a la Leland’s Theory of the Value of the Firm

V=v-—pp +sup]E{/ e "5, dt}
0

7<T
where
5, — (Pr—HxG—K)Vk—¢ if0<t<M
VP —HxG—-K)F—c  ifM<t<T
and

@ v current value of firm’s assets

@ po option premium

@ M length of the option life

@ « strike of the option

@ ¢; cost of servicing the existing debt
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Default Time
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Plant Value

Plant Value as function of Coupon
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Debt Value

Debt Value as function of Coupon
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Pricing Calendar Spreads in Forward Models

Involves prices of two forward contracts with different maturities, say
T1 and T2

Si(t)y=F(t,Ty) and  Sy(t) = F(t, T»),

Remember forward prices are log-normal

Price at time t of a calendar spread option with maturity T and strike
K

noo.T
a=e Rt T), B= \j Z/ ok(s, T2)?ds,
k=171

n T
y=e T IFt ), and 6= J Z/ ok(s, T1)2ds
k=11

and k = e~""=9 (1 = 0 per risk-neutral dynamics)

1< [T
p= 72/ ox(s, Th)ok(s, T2) ds
35 2 ),
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Pricing Spark Spreads in Forward Models

Cross-commodity

@ subscript e for forward prices, times-to-maturity, volatility
functions, ... relative to electric power

@ subscript g for quantities pertaining to natural gas.
Pay-off
(Fo(T, To) = Hx Fy(T, Tp) — K) *.

o T <min{Tg, Ty}
@ Heatrate H
@ Strike K given by O& M costs
Natural
@ Buyer owner of a power plant that transforms gas into electricity,
@ Protection against low electricity prices and/or high gas prices.
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Joint Dynamics of the Commaodities

{ dFe(t, Te) = Fo(t, Te)lpe(t, Te)dt + S 0_; oex(t, Te)dWi(t)]
dFy(t, Tyg) Fo(t, To)lug(t, Tg)dt + >y ogk(t, Tg)dWi(t)]

@ Each commodity has its own volatility factors

@ between The two dynamics share the same driving Brownian
motion processes Wy, hence correlation.
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Fitting Join Cross-Commodity Models

@ on any given day t we have

o electricity forward contract prices for N(® times-to-maturity
(e) (e) (e)

<75 7... < UNe
° natural gas forward contract prices for N@ times-to-maturity
< <9

Typlcally N = 12 and N9 = 36 (possibly more).
o Estimate instantaneous vols ¢ (t) & o(9(t) 30 days rolling window
o For each day t, the N = N(® + N9 dimensional random vector X(t)

(Iog Fo(t+1 ,T/F9>)_|og ﬁe(t,rjﬂe)) )
(e)
EOIN) e

X(t) — . 5 =1,...,

log Fg(t+1,7(9)—log Fy(t,7()
a9 (1) =1, N@

o Run PCA on historical samples of X(t)
@ Choose small number n of factors

o fork=1,....n
o first N(¢) coordinates give the electricity volatilities 7 < U,((e)(‘r) for
k=1,...,n
@ remaining N(9) coordinates give the gas volatilities 7 <— o‘l((g)(r).
Skip gory details
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Pricing a Spark Spread Option

Price at time t
pr = e T OB {(Fe(T, Te) — Hx Fy(T, Tg) — K)*}

Fe(T, Te) and Fy(T, Ty) are log-normal under the pricing measure calibrated
by PCA

Fuo(T, To) = Fol(t, To) exp[ Z/ ox(s, To) ds+Z/ oox(s, To) de(s)}

and:

n

1

T n T
Fo(T, Tg) = Fy(t, Tg) exp [2 /t ogk(s, To)2ds +> /t ogk(S, Tg)de(s)]
k=1

Set
Si(t) = Hx Fg(t, Ty) and So(t) = Fe(t, Te)
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Pricing a Spark Spread Option

Use the constants

=1

n T
a=e"TIF(tT,), and f[= J / oox(s, To)2 ds
K t

for the first log-normal distribution,

n T
/ og.k(8, Tg)? ds
t

—1

v=He ""UF,(t, T,), and 4= J
k

for the second one, k = e~""~9K and

1 [T
P= 35 /t > oek(s, Te)ogk(s, Tg)ds
k=1

for the correlation coefficient.
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Approximations

@ Fourier Approximations (Madan, Carr, Dempster, .. .)
@ Bachelier approximation

@ Zero-strike approximation

@ Kirk approximation

@ Upper and Lower Bounds

Can we also approximate the Greeks ?
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Bachelier Approximation

@ Generate xf”,xé”, - ,x,(\,” from N(u1,0?)

o Generate x\?, x{?) ... x?) from N(y1,02)

@ Correlation p
@ Look at the distribution of

(2) (1) (2) (1)
T et e — e

e

(2) (1)
X|
- 4] e’n
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Log-Normal Samples
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Histogram of the Difference between two Log-normals
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Bachelier Approximation

@ Assume (Sy(T) — S1(T) is Gaussian
@ Match the first two moments

p= (m( T) - Ke—rT) ® (m( T)S(—TI)(e"T) L s(T)e (m(TL(—T!)(e—’T>

with:
mT) = (e x)e T
S(T) = T [X12 (e”‘ZT - 1) — 2X1% (e”‘”"?T _ 1) 12 (GUST _ 1)]

Easy to compute the Greeks !
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Zero-Strike Approximation

p=e TE{(S:(T)~ Si(T) - K)"}




Zero-Strike Approximation

p=e TE{(S:(T)~ Si(T) - K)"}

@ Assume Sy(T) = Fg(T) is log-normal
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Zero-Strike Approximation

p=e TE{(S:(T)~ Si(T) - K)"}

@ Assume Sy(T) = Fg(T) is log-normal
@ Replace Si(T) = Hx Fg(T) by S$i(T) = S(T)+ K
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Zero-Strike Approximation

p=e TE{(S:(T)~ Si(T) - K)"}

@ Assume Sy(T) = Fg(T) is log-normal

@ Replace Si(T) = Hx Fg(T) by S$i(T) = S(T)+ K

@ Assume S;(T) and 5;(T) are jointly log-normal

@ Use Margrabe formula for p = e "TE{(Sz(T) — 5:(T))*}
Use the Greeks from Margrabe formula !
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Kirk Approximation

(o

In(—2— K In(—— K
~ 1+Ke—'T o _ +Ke—'T o
pK = X2¢) ((XKG) + 2) —(X1+Ke ’T)d) (()GKB) _ )

where

2
K_ | 2 X4 2 X4
o = \/02 —2p0102X1 T Ko T + o5 <X1 m Ke—’T> .

Exactly what we called ”"Zero Strike Approximation”!!!
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Upper and Lower Bounds

+
N(a, 8,7,0,k,p) = E { (aeBXw,@z/Z _ ,yezSXr(sZ/z _ H) }
where

@ «, 3,7, d and k real constants
@ X; and X, are jointly Gaussian N(0,1)
@ correlation p

a=x6%" B=0VT yv=xe 9 §=0VT and k=Ke .
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A Precise Lower Bound

p=xe %o (d* + 2 cos(6* + q&)ﬁ) —xie "o (d* + oy 8ing”* ﬁ)
— Ke To(d")

where
@ 0~ is the solution of

1 ( Brsin(f + ¢) ) dcosd
In —
6cosd

 [Bsin(6 + ¢) — dsind] 2
B 1 n (_ Sk sing ) _ Bcos(0 + ¢)
~ Bcos(d + ¢) afBsin(0 + ¢) — dsind] 2

@ the angle ¢ is defined by setting p = cos ¢

@ Jd* is defined by
. 1 | xoe~ %o sin(0" + o)
x1e~% 7oy sin 0*

~ ocos(6* —)VT "

@ the angles ¢ and v are chosen in [0, 7] such that:

> —%(og cos(0"+¢)+o1 cosb

— PO
Cos¢p =p and coswz%,
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Remarks on this Lower Bound

@ pis equal to the true price p when

e K=0
o x1=0
0X2:0
o p=—1
o p=-+1
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Remarks on this Lower Bound

@ pis equal to the true price p when

e K=0
o x1=0
0X2:0
o p=—1
o p=-+1

@ Margrabe formula when K = 0 because
0* = 7 4 1) = 7w + arccos (01_[)02> .
g

with:

o= \/012 — 2po10s + 03
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Delta Hedging

The portfolio comprising at eachtime t < T
Ay =—-e %o (d* + o4 COS 0* ﬁ)

and
Ny =e %To (d* + oo cos(0* + qb)ﬁ)

units of each of the underlying assets is a sub-hedge

its value at maturity is a.s. a lower bound for the pay-off
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The Other Greeks

¥4 and 9, sensitivities w.r.t. volatilities o4 and o2
x sensitivity w.r.t. correlation p

k sensitivity w.r.t. strike price K

© sensitivity w.r.t. maturity time T

S OO0
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The Other Greeks

¥4 and 9, sensitivities w.r.t. volatilities o4 and o2
x sensitivity w.r.t. correlation p

k sensitivity w.r.t. strike price K

© sensitivity w.r.t. maturity time T

S OO0

v = xe Ty (d* + o1 cos f* ﬁ) cosf* VT

Yo = —xoe ®Tp (d* + o2 cos(0* + ¢) ﬁ) cos(0* + ¢) VT
e T . sin 0

X xie @(d + o1cosf ﬁ)m Sind)ﬁ

kK = —o(d)e T

© = % — qix1A1 — exoAo — 1Kk
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Comparisons
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Behavior of the tracking error as the number of re-hedging times increases.
The model data are x; = 100, x2 = 110, o1 = 10%, 02 = 15% and T = 1.
p=0.9, K =230 (left) and p = 0.6, K = 20 (right).
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Generalization: European Basket Option

Black-Scholes Set-Up
@ Multidimensional model
@ nstocks Sy,..., S,
@ Risk neutral dynamics

asi(t)
Si(t)

n
=rat+ Y o;dBj(t),
j=1

o initial values S1(0),. .., Sy(0)
e By,...,B,independent standard Brownian motions
o Correlation through matrix (o)
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European Basket Option (cont.)

@ Vector of weights (w;);=1,... » (most often w; > 0)
@ Basket option struck at K at maturity T given by payoff

<i W,'S,'( T) — K)

Risk neutral valuation: price at time 0

ol )

Carmona [SEAVEES
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Existing Literature

@ Jarrow and Rudd
o Replace true distribution by simpler distribution with same first
moments
o Edgeworth (Charlier) expansions
o Bachelier approximation when Gaussian distribution used
@ SemiParametric Bounds (known marginals)
@ Fully NonParametric Bounds
o Intervals too large
o Used only to rule out arbitrage

@ Replacing Arithmetic Averages by Geometric Averages (Musiela)
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Reformulation of the Problem

@ Change w; if necessary to absorb exponent mean

@ Change w; if necessary to introduce variance in exponent
@ Replace K by —wye—VariG}/2 with Gy ~ N(0,0)

@ Set x; = |w;| and ¢; = sign(w;)

Our original problem becomes: Compute
E{X"}

for

n
X — Z e x, e Var(G)/2,
i=0
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What Are We Looking For?

@ Explicit formulae in close form
@ Compute Greeks as well

n=1
@ Black Scholes Formula
@ Margrabe Formula
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Two Optimization Problems

Forany X e L',

sup E{XY} =E{X"} =

inf E{Z}).
0<Y<1 X=21—2,,21>0,2,>0
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Lower Bound Strategy

sup E{XY}=E{X"}

0<Y<1

@ Compute sup in LHS restricting Y
© We choose Y =1{,.g<q; foruc R"'and d € R
where G = (Go, Gi,...,Gn)and u- G= uGo + t1Gi + ...+ UGn

Can we compute?

p. = SupE {X1{U.ng}}
u,d
We sure can!

n
E{X1(u.c<a1} = Y E {ﬁiXiE{eG’_Var(G’)/2|U ' G}1{U~GSd}}
=0
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p. = Sup sup Ze,x, (d + (Zu);)
deR u-ru=1""4

n

= sup sup Z €ixiP (d + a;(\va),-) .

deR |vl|I=1 =5

where
C=DxD and D = diag(1/0;)
and ] ] .
_ 7)(2/2 _ / 7u2/2
X)= —e and P(x) = — e au.
e(x) o (%) el
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First Order Conditions

Lagrangian L:

Ze,x, (d+o, \Fv)) —g(||v||2—1).

Ze,x, ( —|—a,fv))

where d* and v* satisfy the following first order conditions

n
ZG,‘X/O’,‘\/E,‘/QO (d*-l-O','(\/EV*),') —[LVI-* =0 fOI‘jZO,...J’]
i=0

i €iXip (d* + Ji(\/av*)i)

i=0

I
o

v =1
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Remark (Warm Up for Upper Bound)

for each kin {0,1,...,n}

X = ZEIXIeGI*VaF(Gi)/Z — Akx g Var(Go/2
ik
+
- Z (siXIeGifVar(Gi)/2 _ )\;(XkeGFVar(Gk)m)
ik
_ Z (EI,XieG/fVar(Gi)ﬂ _ )\kaeGk7Var(Gk)/2> -
ik
i > ik A = —ek
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Upper Bound Strategy

In formula

E{X*} = E{Z}.

inf
=21—2,21>0,2,>0

Restrict Z; to

+
Z (6I.XieG,-7Var(G,')/2 _ /\:;)?keGFVar(Gk)/z)
ik

where k =0,...,n, Y, A = —ex and Afe; > 0 for all i # k.
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Upper Bound

* k
- o, { e ()|

where d* is given by the following first order conditions

k . s
S (SN S0 S (S} D HO gk gorj £k
ok )\f-(Xk 2 0';( )\;(Xk 2 ’

1
Z/\f = —&
ik
Me > 0 fori+k.
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Equality between Bounds

Ifforalli,j=0,...,n,
Z,‘j = Ej€j0j0j,

then
Ps

I
©
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0<p —p*é\/>og1klgn{2x, }

Var ({G, — Gk})

where
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Numerical Performance
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Asian Options

0=10% 0=20% 0=30%
035 T 035 T T T 0.35; T
03 03] 03,
0.5 0.25 0.25
0 02 02,
o ) o
¢ 9 ¢
a a g
0.15 015 0.5
0l 01 0]
0.05 0.05) 0,05
0 . . . o . . . o . . .
075 088 100 13 15 075 088 100 13 1% 075 088 10 ik} 1%
stikeK stike K stike K

Lower and upper bound on the price of an Asian option.
The dotted line represents the geometric average approximation.
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Computation of (Approximate) Greeks

A= op- = ¢go (d* + (T,‘(\/EV*),-)

8X,'
Vega,; = %ﬁ = ex(VCV)ip (d* + a,-(\FCv*),-) VT
]
ap* 1 4 -1 * -1 * * *
Xxij = pj = Ekzoeka (Uickavj +U/'Ckizvi)Sﬁ(d + ox(VCV*
ap. 15 . . .
0. = 6,?,. = o7 2 EkaJk(\/év )k (d + Uk(\/6V )k) .
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Second Order Derivatives

@ (d* + Ui(\FCV*)i) @ (d* + Uj(\FCV*)j)
> ko ekXkok(VOV* )k (d* + Uk(\/év*)k) ’

M= eigj
then

1 n n
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Down-and-Out Call on a Basket of n Stocks

Option Payoff

n +
(Z w;Si(T) — K) Tfintir 51()>H}
i—1

Option price is

n , +
1
E E g;ix;e%(M—2771
—o i {inf9<1 X16G1(0)71§U1262H} ’
1= -
where

@ gy=+1,01 >0and H < x

@ {G(6);0 <1}isa (n+ 1)-dimensional Brownian motion starting
from 0 with covariance X.
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Price and Hedges

Use lower bound.

n
_ v, G'(1)—10'»2
=SupE gixje 2% .
P s {ZO o {inf9<1 x1e"‘“‘”*%"?ezH;uGU)Sd}

, P <

Girsanov implies

n
D. = sdli;l);e,-xip {elrlf1 Gi(0)

H

+(Zit —0§/2) 6 > In <X1) u-G(1) <d- (Zu),-}.
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Numerical Results

o P H/x n=10 n=20 n=30
0.4 0.5 0.7 0.1006 0.0938 0.0939
0.4 0.5 0.8 0.0811 0.0785 0.0777
0.4 0.5 0.9 0.0473 0.0455 0.0449
0.4 0.7 0.7 0.1191 0.1168 0.1165
0.4 0.7 0.8 0.1000 0.1006 0.0995
0.4 0.7 0.9 0.0608 0.0597 0.0594
0.4 0.9 0.7 0.1292 0.1291 0.1290
0.4 0.9 0.8 0.1179 0.1175 0.1173
0.4 0.9 0.9 0.0751 0.0747 0.0745
0.5 0.5 0.7 0.1154 0.1122 0.1110
0.5 0.5 0.8 0.0875 0.0844 0.0816
0.5 0.5 0.9 0.0518 0.0464 0.0458
0.5 0.7 0.7 0.1396 0.1389 0.1388
0.5 0.7 0.8 0.1103 0.1086 0.1080
0.5 0.7 0.9 0.0631 0.0619 0.0615
0.5 0.9 0.7 0.1597 0.1593 0.1592
0.5 0.9 0.8 0.1328 0.1322 0.1320
0.5 0.9 0.9 0.0786 0.0782 0.0780
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Valuing a Tolling Agreement

Stylized Version

o Leasing an Energy Asset
o Fossil Fuel Power Plant
o Oil Refinery
o Pipeline

@ Owner of the Agreement

o Decides when and how to use the asset (e.g. run the power plant)
o Has someone else do the leg work
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Plant Operation Model: the Finite Mode Case

@ Markov process (state of the world) X; = (X\"), x® ...)
g X" =P, XxP=aG, X® =0 foradualplant)
@ Plant characteristics
o Zy= {0,---, M — 1} modes of operation of the plant
(] Ho7 Hy--- ,HM71 heat rates
o {C(i,))} ez, regime switching costs (C(i,j) = C(i,¢) + C(¢,j))
o (t, x) reward at time t when world in state x, plant in mode i
@ Operation of the plant (control) u = (¢, 7) where

o & €Zy=1{0,---,M— 1} successive modes
0 0 < m_1 < 7% < T switching times
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Plant Operation Model: the Finite Mode Case

@ T (horizon) length of the tolling agreement
o Total reward

H(x,i,[0, T]; u)( / b (8, Xs) ds = > Clr,—, Ur,)

T<T
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Stochastic Control Problem

@ U(t)) acceptable controls on [t, T]
(adapted cadlag Zy-valued processes u of a.s. finite variation on [t, T])

Optimal Switching Problem

J(t,x, i) = sup J(t,x,i; u),
ueu(t)

where

J(t,x,i;u) = E[H(x,i[t, T u)| X; = x, uy = |

T
E[/O qu(S,XS)dS* Z C(u‘rk77u7-k)|X[:X,Ut:i:|

T"<T
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lterative Optimal Stopping

Consider problem with at most kK mode switches
UK 2 (&, T)eU(t): 7o =Thort > k+1}

Admissible strategies on [¢, T] with at most k switches

;
J(t, x, i) = esssupueuk(,)E[/ Yus (8, Xs) ds— Z C(Ur—, Ury)
t

< <T

Xt:X,UIZi].
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Alternative Recursive Construction

St x, i) 2 /¢,sx ds’xt_x}

JX(t, x, i) £ sup E zp,-(s, Xs) ds + M5 (7, X;)

TES: t

X[ = X] .
Intervention operator M
k,i A k—1 i
i = —Cij+J t )
Mt x) & max{ —Ciy+ S (tx ) |

Hamadéne - Jeanblanc (M=2)
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Variational Formulation

Notation

@ Lx X space-time generator of Markov process X; in RY

@ Meo(t, x,i) = maxii{—Ci;+ ¢(t, x,j)} intervention operator
Assume

@ ¢(t,x,i)inC"2(([0, T] x RY)\D) nc"'(D)

@ D =uU{(t,x): ¢(t,x,i) = Mo(t, x,i)}

@ (QVI) foralli e Zy:

Q ¢ > Mo,

Q EX[[, ¥ocrmeat] =0,

Q Lxo(t,x,i)+¢i(t,x) <0,  ¢(T,x,i)=0,

Q (Lxo(t x, i) + (%)) (68 %, 1) = Mo(t, x,i)) = 0.

Conclusion

¢ is the optimal value function for the switching problem
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Reflected Backward SDE’s

Assume
° Xp = x & 3(Y*,Z*, A) adapted to (F¥)

;
E[ sup |Y,"|2+/ 1ZY12 dt + |A7[?] < oo
otT 0
and

T T
Yy :/ ¢,(s,X§)ds+Ar—At—/ Zs - dWs,
t t
i > M X,
T
/ (V¥ = Mt X)) dA =0, Ao —O.
0
Conclusion: if Y} = JX(0, x, i) then

YE = JA( X D)
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System of Reflected Backward SDE’s

QVI for optimal switching: coupled system of reflected BSDE's for
(YI)iEZMa

T T
Y,":/t Vi(s, Xs) ds + A —A';—/t ZL - dWs,

Vi > max{~Ci; + Y/}
j#i

Existence and uniqueness Directly for M > 27?
M = 2, Hamadéne - Jeanblanc use difference process Y' — Y2.
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Discrete Time Dynamic Programming

@ Time Step At = T/M?
@ Time grid S& = {mAt, m=0,1,..., M*}
@ Switches are allowed in S&

DPP

For ty = mAt, t, = (m+ 1)At consecutive times

t )
(1, X 1) = max(E[ [ (s, Xs) ds + (2, Xe, )| Fo ), MO (81, X))

t
= (it X)) B+ B[S (2, X, 1) 7] ) v (nl;#aix{—c,-,,-+Jk*‘(t1,x,1,j)}).
(1)

Tsitsiklis - van Roy
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Longstaff-Schwartz Version

Recall

-k

JE(mAt, x, i) [Z BiliAL Xiar) At + MO (AL Xoipg)| Xt = x].

/ m
Analogue for 7:

7K (M + 1) At X(ny1)ar, 1), N0 switch;
m, switch,

Tk(mAt> Xrl;lAh ’) = { (2)

and the set of paths on which we switch is given by {¢: 7*(mAt; i) # i} with
F(t; i) = arg mjax(—C,-,,- + (b, xe L)), ik, xe ) At + By [J (B, - )] (X )).

©)
The full recursive pathwise construction for J* is

Yi(MAL, Xpar) At + J((M+ 1)At XG4 4yar 1), NO switch;
_Ci,j + Jk_1 (mAt7 Xrl;']Atvj)7 switch to j
(4)
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@ Regression used solely to update the optimal stopping times 7%
@ Regressed values never stored
@ Helps to eliminate potential biases from the regression step.
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Algorithm

@ Select a set of basis functions (B;) and algorithm parameters

At, M* NP K 6.
@ Generate N” paths of the driving process: {x4a;, m=0,1,..., M*,
¢=1,2,..., NP} with fixed initial condition xg = Xo.

@ Initialize the value functions and switching times J*(T, x£, i) = 0,
(T, x4, i) = M* Vi, k.

© Moving backward in time with t = mAt, m= M*, ..., 0 repeat the Loop:

o Compute inductively the layers k = 0,1,..., K (evaluate
E[Jk(mAt + At, -, i)| Fmat] by linear regression of
{JK(MmAL + At Xonriar, 1)} against {B,(x,‘i,m)}j’\ﬂ, then add the
reward o;i(MAL, Xfp;) - Af)
e Update the switching times and value functions
@ end Loop.

@ Check whether K switches are enough by comparing JK and JK— (they
should be equal).

Observe that during the main loop we only need to store the buffer
J(t,-),...,d(t+46,-);and 7(t,-), - ,7(t+ 6, ).
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Convergence

@ Bouchard - Touzi
@ Gobet - Lemor - Warin
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Example 1

dXt:2(10—Xt)dt+2th, X0:10,

@ Horizon T = 2,

@ Switch separation 6 = 0.02.

@ Two regimes

@ Reward rates o(X;) = 0 and ¢¢(X;) = 10(X; — 10)
@ Switching cost C = 0.3.
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Value Functions

Value Function for successive k

o 0.5 1 1.5 2
Years to maturity

JK(t, x,0) as a function of ¢
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Exercise Boundaries

115 115
/ /
// /
[ / /
11 \’\'\f\x/ 1 x/_/ 1
-
_——
»105F »105
© [
T °
c c
3 3
8 8
o 10 o 10
£ £
2 ]
H H
? 95 0 95
85 . . . 85 . . .
0 05 1 15 2 0 0.5 1 15 2
Time Units Time Units
k = 2 (left) k = 7 (right)

NB: Decreasing boundary around t = 0 is an artifact of the Monte Carlo.
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One Sample

State process and boundaries
12

Cumulative wealth

—2 . L
o 0.5 1 1.5
Time Units
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Example 2: Comparisons

Spark spread X; = (P;, Gi)

log(P:) ~ OU(k = 2,0 =log(10),0 = 0.8)
log(G;) ~ OU(k = 1,0 = log(10), 0 = 0.4)
@ P, =10, Gy =10, p=0.7
@ Agreement Duration [0, 0.5]
@ Reward functions

Po(Xy) = 0

10(P: — Gy)
Pa(Xt) = 20(P:—1.1Gy)

<
x
I

@ Switching costs
Cij=0.25[i — j|
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Numerical Comparison

Method Mean Std. Dev  Time (m)
Explicit FD 5.931 — 25
LS Regression 5.903 0.165 1.46
TvR Regression 5.276 0.096 1.45
Kernel 5.916 0.074 3.8
Quantization 5.658 0.013 400*

Table: Benchmark results for Example 2.
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Example 3: Dual Plant & Delay

log(P;) ~ OU(k = 2,0 = log(10),0 = 0.8),
log(Gt) ~ OU(k = 1,0 =1og(10),0 = 0.4),
log(Or) ~ OU(k = 1,6 =log(10),0 = 0.4),.

@ Py=Go= 0y =10, ppg = 0.5,pp0 = 0.3, pgo =0
@ Agreement Duration T = 1
@ Reward functions

vo(Xt) = 0

vi(X) = 5-(Pi—G)
Yo(Xe) = 5-(Pi— O,
Y3(Xy) = 5-(8P:—4G)
va(X) = 5-(3Pi—40)

@ Switching costs C;; = 0.5
@ Delay § = 0,0.01,0.03 (up to ten days)
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Numerical Results

Setting No Delay 6 =0.01 0=0.03
Base Case 13.22 12.03 10.87
Jumps in P; 23.33 22.00 20.06
Regimes 0-3only  11.04 10.63 10.42
Regimes 0-2 only 9.21 9.16 9.14
Gasonly: 0,1,3 9.53 7.83 7.24

Table: LS scheme with 400 steps and 16000 paths.

Remarks
@ High ¢ lowers profitability by over 20%.

@ Removal of regimes: without regimes 3 and 4 expected profit drops from
13.28 t0 9.21.
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Example 4: Exhaustible Resources

Include I; current level of resources left (/; non-increasing process).
J(t%,0.1) = supE / Ui(8. X6) A5+ J(7, Xe b ) — G Xe = x, I = c].
®)
© Resource depletion (boundary condition) J(t, x,0,i) = 0.

< Not really a control problem /; can be computed on the fly

Mining example of Brennan and Schwartz varying the initial
copper price X

Method/ X 0.3 0.4 0.5 0.6 0.7 0.8

BS ’85 145 435 811 1249 1738 22.68
PDE FD 142 421 8.04 1243 1721 22.62
RMC 1.33 441 815 1244 1752 22.41
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Extension to Gas Storage & Hydro Plants

@ Accomodate outages
@ Include switch separation as a form of delay
@ Was extended (R.C. - M. Ludkovski) to treat

o Gas Storage
o Hydro Plants

@ Porchet-Touzi
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What Remains to be Done

@ Need to improve delays
@ Need convergence analysis
@ Need better analysis of exercise boundaries

@ Need to implement duality upper bounds

@ we have approximate value functions

o we have approximate exercise boundaries

@ so we have lower bounds

e need to extend Meinshausen-Hambly to optimal switching set-up
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Financial Hedging

Extending the Analysis Adding Access to a Financial Market

Porchet-Touzi

@ Same (Markov) factor process X; = (Xtm, Xt(z), ---) as before
@ Same plant characteristics as before

@ Same operation control u = (£, 7) as before

@ Same maturity T (end of tolling agreement) as before

@ Reward for operating the plant

H(Xa i, T, u)(w) = /()T¢us(sa XS) ds — Z C(U‘Fk*’u‘l'k)

Tk<T
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Hedging/Investing in Financial Market

Access to a financial market (possibly incomplete)
@ y initial wealth
@ ; investment portfolio
@ Y7 corresponding terminal wealth from investment
o Utility function U(y) = —e=Y
@ Maximum expected utility

v(y) = sup E{U( Yr)}
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Indifference Pricing

@ With the power plant (tolling contract)

V(x,i,y) = SUp E{U(YL™ + H(x, i, T; 1))}
u,m

INDIFFERENCE PRICING

p=p(x,i,y) =sup{p = 0; V(x,i,y — p) = v(y)}

Analysis of
@ BSDE formulation
@ PDE formulation
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